Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'uniform convergence':
Найдено статей: 8
  1. Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.

    In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.

  2. В данной статье изучена задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде. На основании свойства полноты систем собственных функций двух одномерных спектральных задач доказана теорема единственности. Для доказательства существования решения задачи использован спектральный метод Фурье, основанный на разделении переменных. Решение поставленной задачи построено в виде суммы двойного ряда Фурье-Бесселя. При обосновании равномерной сходимости построенного ряда использованы асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, позволившие доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.

    This article studies the Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped. Based on the completeness property of eigenfunction systems of two one-dimensional spectral problems, the uniqueness theorem is proved. To prove the existence of a solution to the problem, the Fourier spectral method based on the separation of variables is used. The solution to this problem is constructed in the form of a sum of a double Fourier-Bessel series. In substantiating the uniform convergence of the constructed series, we used asymptotic estimates of the Bessel functions of the real and imaginary argument. Based on them, estimates were obtained for each member of the series, which made it possible to prove the convergence of the series and its derivatives to the second order inclusive, as well as the existence theorem in the class of regular solutions

  3. Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.

    The work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.

  4. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации потенциала двойного слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho=\left(r^2-d^2\right)^{1/2}$, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^5$, а также на самой границе. Также доказано, что использование для вычисления интегралов стандартных квадратурных формул не нарушает равномерной кубической сходимости аппроксимаций прямого значения потенциала на границе класса $C^6$. При некоторых упрощениях доказано, что использование для вычисления интегралов стандартных квадратурных формул влечет отсутствие равномерной сходимости аппроксимаций потенциала внутри области вблизи любой граничной точки. Теоретические выводы подтверждены результатами численного решения задачи Дирихле для уравнения Лапласа в круговой области.

    On the basis of piecewise quadratic interpolation, semi-analytical approximations of the double layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration with respect to the variable $\rho=\left(r^2-d^2\right)^{1/2}$ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with the cubic velocity uniformly near the boundary of the class $C^5$, and also on the boundary itself. It is also proved that the use of standard quadrature formulas for calculating the integrals does not violate the uniform cubic convergence of approximations of the direct value of the potential on the boundary of the class $C^6$. With some simplifications, it is proved that the use of standard quadrature formulas for calculating the integrals entails the absence of uniform convergence of potential approximations inside the domain near any boundary point. The theoretical conclusions are confirmed by the results of the numerical solution of the Dirichlet problem for the Laplace equation in a circular domain.

  5. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации нормальной производной потенциала простого слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho =(r^{2} -d^{2} )^{1/2} $, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^{5}$, а также на самой границе. Также доказано, что на границе аппроксимации по аналогии с точной функцией терпят разрыв, величина которого пропорциональна значениям интерполированной функции плотности, но могут быть доопределены на границе до функций, непрерывных или на замкнутой внутренней, или на замкнутой внешней приграничной области. Теоретические выводы о равномерной сходимости подтверждены результатами вычисления нормальной производной вблизи границы единичного круга.

    On the basis of piecewise quadratic interpolation, semi-analytical approximations of the normal derivative of the simple layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration over the variable $\rho=(r^{2}-d^{2})^{1/2} $ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with cubic velocity uniformly near the boundary of the class $C^{5}$, as well as on the boundary itself. It is also proved that, by analogy with the exact function, the approximations suffer a discontinuity at the boundary, the magnitude of which is proportional to the values of the interpolated density function, but they can be extended on the boundary to functions that are continuous either on a closed internal border domain or on a closed external one. Theoretical conclusions about uniform convergence are confirmed by the results of calculating the normal derivative near the boundary of a unit circle.

  6. В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.

    In the present paper, two non-local initial-boundary value problems have been formulated for a partial differential equation of high even order with a Bessel operator in a rectangular domain. The correctness of one of the considered problems has been investigated. To do this, applying the method of separation of variables to the problem under consideration, the spectral problem was obtained for an ordinary differential equation of high even order. The self-adjointness of the last problem was proved, which implies the existence of the system of its eigenfunctions, as well as orthonormality and completeness of this system. Further, the Green's function of the spectral problem was constructed, with the help of which it was equivalently reduced to the Fredholm integral equation of the second kind with symmetrical kernel. Using this integral equation and Mercer's theorem, the uniform convergence of some bilinear series depending on found eigenfunctions has been studied. The order of the Fourier coefficients was established. The solution of the considered problem has been written as the sum of a Fourier series with respect to the system of eigenfunctions of the spectral problem. The uniform convergence of this series and also the series obtained from it by term-by-term differentiation was proved. Using the method of spectral analysis, the uniqueness of the solution of the problem was proved. An estimate for the solution of the problem was obtained, from which its continuous dependence on the given functions follows.

  7. Осипов А.В., Косолобов Д.А.
    О секвенциально-компактно-открытой топологии, с. 75-84

    Исследуется секвенциально-компактно-открытая топология на множестве всех непрерывных вещественнозначных функций C(X), определенных на тихоновском пространстве X. Изучаются основные свойства этой топологии и отношения с хорошо известными множественно-открытыми топологиями.

    Osipov A.V., Kosolobov D.A.
    On sequentially compact-open topology, pp. 75-84

    We investigate sequentially compact-open topology on the set of all continuous real-valued functions C(X), defined on a Tychonov space X. We study the basic properties of this topology and relationships with wellknown set-open topologies.

  8. В данной статье для одного уравнения смешанного типа четвертого порядка, вырождающегося внутри и на границе области, в прямоугольной области сформулирована и исследована нелокальная начально-граничная задача. С помощью применения метода разделения переменных получена спектральная задача для обыкновенного дифференциального уравнения. Построена функция Грина последней задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром, откуда следует существование собственных значений и система собственных функций спектральной задачи. Доказана теорема разложения заданной функции в равномерно сходящийся ряд по системе собственных функций. С помощью найденного интегрального уравнения и теоремы Мерсера доказана равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.

    In the article, a nonlocal boundary value problem has been investigated for a fourth-order mixed-type equation degenerating inside and on the boundary of a domain. Applying the method of separation of variables to the problem under study, the spectral problem for an ordinary differential equation is obtained. The Green function of the last problem is constructed, with the help of which it is equivalently reduced to the Fredholm integral equation of the second kind with a symmetric kernel, which implies the existence of eigenvalues and the system of eigenfunctions for the spectral problem. The theorem of expansion of a given function into a uniformly convergent series with respect to the system of eigenfunctions is proved. Using the found integral equation and Mercer's theorem, a uniform convergence of some bilinear series depending on the found eigenfunctions is proved. The order of the Fourier coefficients is established. The solution of the problem under study is written as the sum of the Fourier series with respect to the system of eigenfunctions of the spectral problem. An estimate for the problem's solution is obtained, from which its continuous dependence on the given functions follows.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref