Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об управлении отдельными асимптотическими инвариантами двумерных линейных управляемых систем с наблюдателем, с. 445-461Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).
линейная управляемая система с наблюдателем, равномерная полная управляемость, равномерная полная наблюдаемость, глобальная управляемость асимптотических инвариантов
Control over some asymptotic invariants of two-dimensional linear control systems with an observer, pp. 445-461We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).
-
О равномерной глобальной достижимости двумерных линейных систем с локально интегрируемыми коэффициентами, с. 178-192Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$ \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t),$ $t\geqslant 0.$ Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad\qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы $(2)$ означает существование такой матричной функции $U(t),$ $t\geqslant 0,$ которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N,$ $\det H_k>0.$ Представленная задача решается в предположении равномерной полной управляемости системы $(1),$ соответствующей замкнутой системе $(2),$ т.е. при условии существования таких $\sigma>0$ и $\gamma>0,$ что при любых начальном моменте времени $t_0\geqslant 0$ и начальном состоянии $x(t_0)=x_0\in \mathbb{R}^n$ системы (1) на отрезке $[t_0,t_0+\sigma]$ найдется измеримое и ограниченное векторное управление $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ переводящее вектор начального состояния этой системы в ноль на данном отрезке. Доказано, что в двумерном случае, т.е. при $n=2,$ свойство равномерной полной управляемости системы $(1)$ является достаточным условием равномерной глобальной достижимости соответствующей системы $(2).$
On uniform global attainability of two-dimensional linear systems with locally integrable coefficients, pp. 178-192We consider a linear time-varying control system with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1) $$ We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t),$ $t\geqslant 0.$ For the closed-loop system $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad \qquad (2)$$ we study a question about the conditions for its uniform global attainability. The last property of the system $(2)$ means existence of a matrix $U(t),$ $t\geqslant 0,$ that ensure equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system $(2)$ with fixed $T>0$ and arbitrary $k\in\mathbb N,$ $\det H_k>0.$ The problem is solved under the assumption of uniform complete controllability of the system $(1),$ corresponding to the closed-loop system $(2),$ i.e. assuming the existence of such $\sigma>0$ and $\gamma>0,$ that for any initial time $t_0\geqslant 0$ and initial condition $x(t_0)=x_0\in \mathbb{R}^n$ of the system $(1)$ on the segment $[t_0,t_0+\sigma]$ there exists a measurable and bounded vector control $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ that transforms a vector of the initial state of the system into zero on that segment. It is proved that in two-dimensional case, i.e. when $n=2,$ the property of uniform complete controllability of the system $(1)$ is a sufficient condition of uniform global attainability of the corresponding system $(2).$
-
Исследуются условия, при которых управляемая система ẋ = f(t, x, u), u ∈ U(t, x), вместе с замыканием множества сдвигов (относительно времени t) управляемой системы обладает свойством равномерной локальной или равномерной глобальной достижимости на заданном отрезке времени. Не предполагается, что функция (t, x) → U(t, x), задающая геометрические ограничения на допустимые управления u(t, x) ∈ U(t, x), имеет выпуклые компактные образы и не предполагается, что соответствующее управляемой системе дифференциальное включение имеет выпуклые образы.
статистически слабо инвариантные множества, управляемые системы, множество достижимости, интегральная воронка, дифференциальные включенияWe investigate the conditions under which the control system ẋ = f(t, x, u), u ∈ U(t, x) together with closure of set of shifts (concerning time t) of control system possesses property of uniform local or uniform global attainability on the given time interval. We do not suppose that function (t, x) → U(t, x), setting geometrical restrictions on admissible controls u(t, x) ∈ U(t, x), has convex compact images and we do not suppose that differential inclusion corresponding to control system has convex images.
-
Рассматривается линейная нестационарная управляемая система $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ с кусочно-непрерывными и ограниченными $\omega$-периодическими матрицами коэффициентов $A(\cdot)$ и $B(\cdot)$. Управление в системе (1) строится по принципу линейной обратной связи $u=U(t)x$ с кусочно-непрерывной и ограниченной матричной функцией $U(t)$, $t\in \mathbb{R}$. Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы (2) означает существование такой матричной функции $U(t)$, $t\in \mathbb{R}$, которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb{Z}$, $\det H_k>0$. Представленная задача решается в предположении равномерной полной управляемости (в смысле Калмана) системы (1), соответствующей замкнутой системе (2), т.е. при условии существования для системы (1) таких чисел $\sigma>0$ и $\alpha_i>0$, $i=\overline{1,4}$, что при всяких числе $t_0\in\mathbb{R}$ и векторе $\xi\in \mathbb{R}^n$ справедливы неравенства $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ в которых $X(t,s)$ - матрица Коши линейной системы (1) при $u(t)\equiv0.$ Доказано, что свойство равномерной полной управляемости (в смысле Калмана) периодической системы (1) является необходимым и достаточным условием равномерной глобальной достижимости соответствующей системы (2).
линейная управляемая система с периодическими коэффициентами, равномерная полная управляемость, равномерная глобальная достижимостьWe consider a linear time-varying control system $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ with piecewise continuous and bounded $\omega$-periodic coefficient matrices $A(\cdot)$ and $B(\cdot).$ We construct control of the system (1) as a linear feedback $u=U(t)x$ with piecewise continuous and bounded matrix function $U(t)$, $t\in \mathbb{R}$. For the closed-loop system $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ the conditions of its uniform global attainability are studied. The latest property of the system (2) means existence of matrix $U(t)$, $t\in \mathbb{R}$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb{Z}$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability (by Kalman) of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such numbers $\sigma>0$ and $\alpha_i>0$, $i=\overline{1,4}$, that for any number $t_0\in\mathbb{R}$ and vector $\xi\in \mathbb{R}^n$ the following inequalities hold: $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ where $X(t,s)$ is the state-transition matrix of linear system (1) with $u(t)\equiv0.$ It is proved that the property of uniform complete controllability (by Kalman) of the periodic system (1) is a necessary and sufficient condition of uniform global attainability of the corresponding system (2).
-
О достаточном условии глобальной скаляризуемости линейных управляемых систем с локально интегрируемыми коэффициентами , с. 221-230Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами
$$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad(1) $$
Управление в системе $(1)$ строится в виде линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t)$, $t\geqslant 0$. Для замкнутой системы
$$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad(2)$$
введено понятие равномерной глобальной квазидостижимости, которое является ослаблением равномерной глобальной достижимости - свойства системы $(2)$, позволяющего за счет выбора функции $U(t)$, $t\geqslant 0$, для матрицы Коши $X_U(t,s)$ этой системы обеспечить выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N$, $\det H_k>0$. Доказано, что из равномерной глобальной квазидостижимости системы $(2)$ следует глобальная скаляризуемость этой системы, то есть существование для произвольной наперед заданной локально интегрируемой и интегрально ограниченной скалярной функции $p=p(t)$, $t\geqslant0$, такой измеримой и ограниченной матричной функции $U=U(t)$, $t\geqslant0$, при которой система $(2)$ асимптотически эквивалентна системе скалярного типа $\dot z=p(t)z$, $z\in\mathbb{R}^n,\ t\geqslant0$.
On the sufficient condition of global scalarizability of linear control systems with locally integrable coefficients, pp. 221-230We consider a linear time-varying control system with locally integrable and integrally bounded coefficients
$$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad (1)$$
We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t)$, $t\geqslant 0$. For the closed-loop system
$$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad(2)$$
a definition of uniform global quasi-attainability is introduced. This notion is a weakening of the property of uniform global attainability. The last property means existence of matrix $U(t)$, $t\geqslant 0$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system $(2)$ with fixed $T>0$ and arbitrary $k\in\mathbb N$, $\det H_k>0$. We prove that uniform global quasi-attainability implies global scalarizability. The last property means that for any given locally integrable and integrally bounded scalar function $p=p(t)$, $t\geqslant0$, there exists a measurable and bounded function $U=U(t)$, $t\geqslant 0$, which ensures asymptotic equivalence of the system $(2)$ and the system of scalar type $\dot z=p(t)z$, $z\in\mathbb{R}^n$, $t\geqslant0$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.