Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассматриваются методы перестроения неструктурированных четырехугольных и смешанных сеток. Описываются варианты определения шаблонов перестроения «на девять ячеек» в случае неструктурированной четырехугольной сетки, обеспечивающие выпуклость ячеек конечной сетки. Для контроля максимально допустимого угла сетки предложены шаблоны перестроения ячеек плохого качества. Разработан алгоритм перестроения неструктурированной смешанной сетки, приведены примеры работы алгоритма, показывающие улучшение качества сетки в сравнении с известными методами.
неструктурированные сетки, смешанные сетки, перестроение сеток, шаблоны перестроений, геометрически адаптивные сеткиThis paper studies the refinement of unstructured quadrilateral and mixed meshes. We propose the variations for the definition of refinement templates “in nine cells” for the case if there is an unstructured quadrilateral mesh, which ensures cell's convexity of the result mesh. To control the maximum permissible mesh angle, we use the templates of refining the cells of bad quality. In addition, this paper presents a new unstructured mixed mesh refinement algorithm; also, we give several demonstration examples of the algorithm that show the considerable improvement of mesh quality, as compared with the well-known methods.
-
Моделирование взаимодействия сверхзвукового потока и деформируемой панели в ударной трубе, с. 156-165Рассматриваются постановка и алгоритм решения сопряженной задачи взаимодействия сверхзвукового потока и деформируемой панели. Течение газа описывается системой уравнений сохранения в приближении совершенного газа. Численное интегрирование выполняется на основе метода конечных объемов. Для вычисления конвективных потоков применялась монотонизированная схема, обеспечивающая второй порядок аппроксимации по пространству в областях гладкости. Задача динамики деформирования панели аппроксимировалась по пространству методом конечных элементов, а по времени по схеме Ньюмарка. При решении задач использовались несогласованные неструктурированные сетки, отвечающие разным схемам дискретизации и требованиям аппроксимации. Условия сопряжения на границе раздела удовлетворялись при помощи алгоритма двустороннего слабого связывания. Численные результаты сопоставляются с известными экспериментальными данными. Проводится анализ различных факторов, влияющих на картину течения и форму колебаний пластины.
математическое моделирование, сопряжённая задача, газовая динамика, упругое деформирование, ударная труба.
Modeling of interaction of a supersonic stream and the deformable panel in a shock tube , pp. 156-165This paper presents an algorithm for solving the FSI problem of gas-structure interaction between a supersonic flow and a deformable panel. Gas flows are modelled by the system of conservation equations for a perfect gas. Numerical integration is based on the finite volume method. To approximate convective flows in space, a monotonic scheme is used, providing a second-order approximation in the smooth parts of the domain. For dynamic panel deformation, the finite element method is used to discretize the spatial variables and the Newmark method is used to discretize the time variable. Numerical solution of the FSI problem is obtained on nonmatching unstructured meshes providing different discretization and approximation schemes. Boundary interactions are modelled by the algorithm of bidirectional weak binding. Obtained numerical results are compared with available experimental data. A number of different factors affecting the gas flow and the panel shape are analyzed.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.