Все выпуски
- 2025 Том 35
 - 2024 Том 34
 - 2023 Том 33
 - 2022 Том 32
 - 2021 Том 31
 - 2020 Том 30
 - 2019 Том 29
 - 2018 Том 28
 - 2017 Том 27
 - 2016 Том 26
 - 2015 Том 25
 - 2014
 - 2013
 - 2012
 - 2011
 - 2010
 - 2009
 - 2008
 
К вопросу об обобщённой выпуклости оператора Грина
 pdf (138K)
Пусть Q есть дифференциальный оператор порядка m − 1, 2 ≤ m ≤ n, для которого (a, b) будет промежутком неосцилляции, причём оператор Грина G : L[a, b] → Wn[a, b] краевой задачи Lx = f, li(x) = 0, i = 1, . . . , n обладает свойством обобщённой выпуклости: QGP > 0 для некоторого линейного гомеоморфизма P лебегова пространства L[a, b]. Найдены условия, при которых возмущённая краевая задача Lx = PVQx+f, li(x) = 0, i = 1, . . . , n также однозначно разрешима в соболевском пространстве Wn[a, b] и её оператор Грина Ĝ наследует свойство G, а именно QĜP > 0.
On the question of extended convexity of Green operator
Let Q be a differential operator of order m − 1, 2 ≤ m ≤ n, for which (a, b) is the interval of nonoscillation, and the Green’s operator G : L[a, b] → Wn[a, b] of boundary value problem Lx = f, li(x) = 0, i = 1, . . . , n has the property of generalized convexity: QGP > 0 for some linear homeomorphism P of Lebesgue space L[a, b]. Under some conditions, we prove, that the perturbed boundary value problem Lx = PVQx+f, li(x) = 0, i = 1, . . . , n is also uniquely solvable in the Sobolev space Wn[a, b] and the Green’s operator Ĝ inherits the property of G, that is QĜP > 0.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.



