Об асимптотических свойствах оптимальных решений и функции цены в задачах оптимального управления на бесконечном горизонте

 pdf (509K)

Изучается поведение оптимальных решений и функции цены в задачах оптимального управления на бесконечном промежутке времени, возникающих в моделях экономического роста, когда параметр эластичности производственной функции Кобба–Дугласа растет до своего предельного значения, равного единице. Решение задачи строится в рамках принципа максимума Понтрягина, адаптированного к задачам на бесконечном промежутке времени. В предельном случае задача вырождается в линейную с постоянным оптимальным управлением, зависящим от параметров модели. Качественное исследование гамильтоновых систем обнаруживает ряд значительных изменений в поведении решений, таких как отсутствие стационарного положения в предельном случае. Тем не менее, гамильтониан и максимизированный гамильтониан задачи сохраняют свои свойства гладкости по всем переменным и вогнутости по фазовым переменным. Также в работе строится функция цены для обеих задач управления и приводятся результаты численных экспериментов для иллюстрации проведенных исследований.

Ключевые слова: оптимальное управление, гамильтоновы системы, функция цены, принцип максимума Понтрягина.
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2012, вып. 1, с. 77-95
DOI: 10.20537/vm120108

Asymptotic properties of optimal solutions and value functions in optimal control problems with infinite time horizon

The research is devoted to the investigation of the behavior of optimal solutions and value functions in optimal control problems on infinite horizon, which arise in the economic growth models when an elasticity parameter of the Cobb-Douglas production function grows up to its limit value which is equal to unity. The solution is constructed within the framework of the Pontryagin maximum principle for problems on infinite time horizon. In the limit case the problem becomes linear and has a constant optimal control depending on model parameters only. Qualitative analysis of Hamiltonian systems outlines significant changes in solution behavior, namely, the absence of steady states in the limit case. Nevertheless, both the Hamiltonian function and the maximized Hamiltonian function save their properties of smoothness with respect to all variables, and strict concavity with respect to phase variables. Value functions are constructed for both linear and nonlinear optimal control problems. Numerical experiments are implemented for illustrating results of the sensitivity analysis.

Keywords: optimal control, Hamiltonian systems, value function, Pontryagin maximum principle.
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2012, issue 1, pp. 77-95

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref