К вопросу о соблюдении ограничений в классе обобщенных элементов

 pdf (287K)

Рассматривается проблема соблюдения ограничений асимптотического характера, которая с использованием элементов естественного расширения редуцируется к обобщенной задаче в классе ультрафильтров исходного пространства решений. Ограничениям упомянутого типа сопоставляется стандартная компонента, определяемая обычным требованием принадлежности заданному множеству; данная компонента на идейном уровне соответствует конструкции точных решений Дж. Варги. В то же время при соблюдении вышеупомянутых ограничений могут возникать асимптотические (по смыслу) режимы, для которых реализуется идея соблюдения условий принадлежности «с некоторого момента»; при этом, однако, одно множество, характеризующее стандартное ограничение в терминах включения, заменяется непустым семейством. Данное семейство нередко возникает при последовательном ослаблении условия принадлежности элемента, зависящего от выбора решения, фиксированному множеству в топологическом пространстве (последнее зачастую бывает метризуемым). Множества - элементы упомянутого семейства - определяются при этом условиями принадлежности соответствующих их элементов окрестностям данного фиксированного множества. Возможна, однако, ситуация, когда семейство, определяющее ограничения асимптотического характера, возникает изначально и не связывается уже с ослаблением какого-либо (стандартного) условия.

В статье рассматривается общий случай, для которого исследуется структура множества допустимых обобщенных элементов. Показано, что для «хорошо устроенной» обобщенной задачи стандартная компонента «асимптотических ограничений» отвечает за реализацию внутренности вышеупомянутого множества допустимых обобщенных элементов, и указано конкретное представление данного топологического свойства. Получены также некоторые следствия упомянутого представления, касающиеся допустимых обобщенных элементов, не аппроксимируемых в топологическом смысле точными решениями.

Ключевые слова: расширение, топологическое пространство, ультрафильтр
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2014, вып. 3, с. 90-109
DOI: 10.20537/vm140309

To the validity of constraints in the class of generalized elements

The problem of validity of asymptotic constraints is considered. This problem is reduced to a generalized problem in the class of ultrafilters of initial solution space. The above-mentioned asymptotic constraints are associated with the standard component defined by the usual requirement of belonging to a given set. This component corresponds conceptually to Warga construction of exact solutions. At the same time, under validity of above-mentioned constraints, asymptotic regimes realizing the idea of validity of belonging conditions with a “certain index” can arise; however, the fixed set characterizing the standard constraint in terms of inclusion is replaced by a nonempty family. This family often arises due to sequential weakening of the belonging constraint to a fixed set in topological space (often metrizable) for an element dependent on the solution choice. The elements of above-mentioned family are the sets which are defined by belonging of their elements to neighborhoods of the given fixed set. But it is possible that the family defining the asymptotic constraints arises from the very beginning and does not relate to weakening of a standard condition.

The paper deals with the general case, for which the set structure of admissible generalized elements is investigated. It is shown that for “well-constructed” generalized problem the standard component of “asymptotic constraints” is responsible for the realization of the insides of above-mentioned set of admissible generalized elements; the particular representation of this topological property is established. Some corollaries of mentioned representation concerning generalized admissible elements not approximable (in topological sense) by precise solutions are obtained.

Keywords: extension, topological space, ultrafilter
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2014, issue 3, pp. 90-109

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref