Рекуррентные и почти рекуррентные многозначные отображения и их сечения. III

 pdf (403K)

Пусть $(U,\rho )$ - полное метрическое пространство, ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, и ${\mathcal R} ({\mathbb R},U)$ - пространства (сильно) измеримых функций $f:{\mathbb R}\to U$, преобразования Бохнера ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ которых являются рекуррентными функциями со значениями в метрических пространствах $L^p([-l,l],U)$ и $L^1([-l,l], (U,\rho ^{ \prime }))$, где $l>0$ и $(U,\rho^{ \prime })$ - полное метрическое пространство с метрикой $\rho ^{ \prime }(x,y)=\min\{ 1, \rho (x,y)\} ,$ $x, y\in U.$ Аналогично определяются пространства ${\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ и ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ функций (многозначных отображений) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ со значениями в полном метрическом пространстве $({\mathrm {cl}}\,_{ b}\, U, {\mathrm {dist}})$ непустых замкнутых ограниченных подмножеств метрического пространства $(U,\rho )$ с метрикой Хаусдорфа ${\mathrm {dist}}$ (при определении многозначных отображений $F\in {\mathcal R} ({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ рассматривается также метрика ${\mathrm {dist}} ^{ \prime }(X,Y)=\min\{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$). Доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ (соответственно $f\in {\mathcal R}^p ({\mathbb R},U)$) многозначных отображений $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (соответственно $F\in {\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$), для которых множества почти периодов подчинены множествам почти периодов многозначных отображений $F$. Для функций $g\in {\mathcal R} ({\mathbb R},U)$ приведены условия существования сечений $f\in {\mathcal R} ({\mathbb R},U)$ и $f\in {\mathcal R}^p ({\mathbb R},U),$ для которых $\rho (f(t),g(t))=\rho (g(t),F(t))$ при п.в. $t\in {\mathbb R}$. В предположении, что для любого $\varepsilon >0$ существует относительно плотное множество общих $\varepsilon $-почти периодов функции $g$ и многозначного отображения $F$, также доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ таких, что $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ при п.в. $t\in {\mathbb R}$, где $\eta :[0,+\infty ) \to [0,+\infty )$ - произвольная неубывающая функция, для которой $\eta (0) =0$ и $\eta (\xi )>0$ при всех $\xi >0$, при этом $f\in {\mathcal R}^p ({\mathbb R},U)$ в случае $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ При доказательстве используется равномерная аппроксимация функций $f\in {\mathcal R} ({\mathbb R},U)$ элементарными функциями из пространства ${\mathcal R} ({\mathbb R},U)$ множества почти периодов которых подчинены множествам почти периодов функций $f$.

 

Ключевые слова: рекуррентная функция, сечение, многозначное отображение
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2014, вып. 4, с. 25-52
DOI: 10.20537/vm140403

Recurrent and almost recurrent multivalued maps and their selections. III

Let $(U,\rho )$ be a complete metric space and let ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, and ${\mathcal R} ({\mathbb R},U)$ be the spaces of (strongly) measurable functions $f:{\mathbb R}\to U$ for which the Bochner transforms ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ are recurrent functions with ranges in the metric spaces $L^p([-l,l],U)$ and $L^1([-l,l],(U,\rho ^{ \prime }))$ where $l>0$, and $(U,\rho ^{ \prime })$ is the complete metric space with the metric $\rho ^{ \prime }(x,y)=\min \{ 1,\rho (x,y)\} ,$ $x, y\in U.$ Analogously, we define the spaces ${\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ and ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ of functions (multivalued mappings) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ with ranges in the complete metric space $({\mathrm {cl}}\,_{ b}\, U,{\mathrm {dist}})$ of nonempty closed bounded subsets of the metric space $(U,\rho )$ with the Hausdorff metric ${\mathrm {dist}}$ (while defining the multivalued mappings $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ the metric ${\mathrm {dist}} ^{ \prime }(X,Y)=\min \{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$, is also considered). We prove the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ (accordingly $f\in {\mathcal R}^p({\mathbb R},U)$) of multivalued maps $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (accordingly $F\in {\mathcal R}^p ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$) for which the sets of almost periods are subordinated to the sets of almost periods of multivalued maps $F$. For functions $g\in {\mathcal R} ({\mathbb R},U),$ the conditions for the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ and $f\in {\mathcal R}^p({\mathbb R},U)$ such that $\rho (f(t),g(t))=\rho (g(t),F(t))$ for a.e. $t\in {\mathbb R}$ are obtained. On the assumption that the function $g$ and the multivalued map $F$ have relatively dense sets of common $\varepsilon $-almost periods for all $\varepsilon >0$, we also prove the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ such that $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ for a.e. $t\in {\mathbb R}$, where $\eta :[0,+\infty ) \to [0,+\infty )$ is an arbitrary nondecreasing function for which $\eta (0)=0$ and $\eta (\xi )>0$ for all $\xi >0$, and, moreover, $f\in {\mathcal R}^p({\mathbb R},U)$ if $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ To prove the results we use the uniform approximation of functions $f\in {\mathcal R} ({\mathbb R},U)$ by elementary functions belonging to the space ${\mathcal R} ({\mathbb R},U)$ which have the sets of almost periods subordinated to the sets of almost periods of the functions $f$.

 

Keywords: recurrent function, selector, multivalued map
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2014, issue 4, pp. 25-52

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref