Кубические формы без мономов от двух переменных

 pdf (198K)

Доказано, что общая кубическая форма над полем комплексных чисел преобразуется к виду без мономов от ровно двух переменных каждый посредством невырожденной линейной замены координат. Если коэффициенты при мономах от одной переменной равны единице, а остальные коэффициенты принадлежат достаточно маленькому полидиску около нуля, то преобразование может быть аппроксимировано с помощью итерационного алгоритма. При этих ограничениях тот же результат справедлив над полем вещественных чисел. Этот результат обобщает теорему Леви-Деспланка о матрицах со строгим диагональным преобладанием. Нами подробно рассмотрены свойства приводимых кубических форм. Так нами доказано существование приводимой вещественной кубической формы, которая не эквивалентна никакой форме со всеми мономами от ровно одной переменной и без мономов от ровно двух переменных каждый. Предложено достаточное условие существования особой точки на проективной кубической гиперповерхности. Обсуждается вычислительная сложность распознавания особых точек.

Ключевые слова: кубическая форма, линейное преобразование, особая точка
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2015, т. 25, вып. 1, с. 71-77
DOI: 10.20537/vm150108

Cubic forms without monomials in two variables

It is proved that a general cubic form over the field of complex numbers can be transformed into a form without monomials of exactly two variables by means of a non-degenerate linear transformation of coordinates. If the coefficients of monomials in only one variable are equal to one, and the remaining coefficients belong to sufficiently small polydisc near zero, then the transformation can be approximated by iterative algorithm. Under these restrictions the same result holds over the reals. This result generalizes the Levy-Desplanques theorem on strictly diagonally dominant matrices. We discuss in detail the properties of reducible cubic forms. So we prove the existence of a reducible real cubic form that is not equivalent to any form with all monomials in only one variable and without any monomials in exactly two variables. We suggest a sufficient condition for the existence of a singular point on a projective cubic hypersurface. The computational complexity of singular points recognition is discussed.

Keywords: cubic form, linear transformation, singular point
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2015, vol. 25, issue 1, pp. 71-77

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref