Нуклеация и рост новой фазы на промежуточной стадии фазовых переходов в метастабильных растворах и расплавах

 pdf (435K)

Найдено полное аналитическое решение интегро-дифференциальной модели, описывающей промежуточную стадию фазовых переходов в однокомпонентных расплавах и растворах без учета флуктуаций в скоростях роста кристаллов. В рамках этой модели получено точное аналитическое решение кинетического уравнения - найдена плотность функции распределения кристаллов по размерам. Выведено интегро-дифференциальное уравнение для степени метастабильности системы (для ее переохлаждения/пересыщения) при различных кинетических механизмах нуклеации зародышей. Построено полное аналитическое решение этого уравнения на основе метода седловой точки для вычисления интеграла лапласовского типа (метода перевала). Проанализировано четыре приближения аналитического решения и показана его сходимость. Исследованы кинетические механизмы Вебера-Вольмера-Френкеля-Зельдовича и Майера. Определены временные зависимости числа кристаллов и среднего размера кристаллов для переохлажденных расплавов.

Ключевые слова: нуклеация, кинетика, рост твердой фазы, аналитические решения
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2016, т. 26, вып. 2, с. 283-296
DOI: 10.20537/vm160214

Nucleation and growth of a new phase at the intermediate stage of phase transitions in metastable solutions and melts

A complete analytical solution of an integro-differential model, which describes the intermediate stage of phase transitions in one-component melts and solutions without allowance for fluctuations in the crystal growth rates, is found. An exact analytical solution of the kinetic equation is determined within the framework of this model. The density of distribution function of crystals in sizes is found. An integro-differential equation for the system metastability level (for its supercooling/supersaturation) is derived for different kinetic mechanisms of particle nucleation. A complete analytical solution of this equation is constructed on the basis of saddle-point method for the Laplace-type integral (steepest descent method). Four approximations of the analytical solution are analyzed and its convergence is shown. The kinetic mechanisms of Weber-Volmer-Frenkel-Zel’dovich and Meirs are studied. A transient behavior of the number of particles and the mean crystal size is determined for supercooled melts.

Keywords: nucleation, kinetics, solid phase growth, analytical solutions
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2016, vol. 26, issue 2, pp. 283-296

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref