Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
О периодических движениях гамильтоновой системы в окрестности неустойчивого равновесия в случае двойного резонанса третьего порядка
Рассматриваются движения близкой к автономной периодической по времени гамильтоновой системе с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется двойной, основной и комбинационный, резонанс третьего порядка, при этом комбинационный резонанс может быть сильным или слабым. В обоих случаях в полной нелинейной системе указанное равновесие неустойчиво. Проведена нормализация гамильтонианов возмущенного движения в членах до четвертого порядка включительно относительно возмущений с учетом имеющихся резонансов. Решен вопрос о существовании и числе положений равновесия соответствующих приближенных (модельных) систем, найдены достаточные и необходимые условия их устойчивости. Методом малого параметра Пуанкаре построены периодические движения исходных полных систем, рождающиеся из положений равновесия модельных систем. Решен вопрос об их устойчивости в линейном приближении. В частности, получены условия существования (в малой окрестности неустойчивого тривиального равновесия) устойчивых (в линейном приближении) периодических движений.
On the periodic motions of a Hamiltonian system in the neighborhood of unstable equilibrium in the presence of a double three-order resonance
The paper considers the motion of a near-autonomous time-periodic two-degree-of-freedom Hamiltonian system in a neighborhood of trivial equilibrium being stable in the linear approximation. The third-order double resonance (fundamental and Raman) is assumed to occur in the system, at that Raman resonance can be strong or weak. In both cases the equilibrium considered is unstable in a full nonlinear system. Normalization of Hamiltonians of the perturbed motion is carried out in the terms up to the fourth order with respect to disturbance, taking into account the existing resonances. The problem of the existence and number of equilibrium positions of the corresponding approximate (model) systems is solved, and sufficient and necessary conditions for their stability are obtained. By Poincare's small parameter method, periodic motions of the initial full systems generated from the equilibrium positions of the model systems are constructed. The question of their stability in the linear approximation is solved. In particular, the conditions of the existence of stable (in the linear approximation) periodic motions in a small neighborhood of the unstable trivial equilibrium are obtained.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.