О периодических движениях гамильтоновой системы в окрестности неустойчивого равновесия в случае двойного резонанса третьего порядка

 pdf (399K)

Рассматриваются движения близкой к автономной периодической по времени гамильтоновой системе с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется двойной, основной и комбинационный, резонанс третьего порядка, при этом комбинационный резонанс может быть сильным или слабым. В обоих случаях в полной нелинейной системе указанное равновесие неустойчиво. Проведена нормализация гамильтонианов возмущенного движения в членах до четвертого порядка включительно относительно возмущений с учетом имеющихся резонансов. Решен вопрос о существовании и числе положений равновесия соответствующих приближенных (модельных) систем, найдены достаточные и необходимые условия их устойчивости. Методом малого параметра Пуанкаре построены периодические движения исходных полных систем, рождающиеся из положений равновесия модельных систем. Решен вопрос об их устойчивости в линейном приближении. В частности, получены условия существования (в малой окрестности неустойчивого тривиального равновесия) устойчивых (в линейном приближении) периодических движений.

Ключевые слова: гамильтонова система, кратный резонанс, устойчивость, периодические движения
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2016, т. 26, вып. 3, с. 418-438
DOI: 10.20537/vm160310

On the periodic motions of a Hamiltonian system in the neighborhood of unstable equilibrium in the presence of a double three-order resonance

The paper considers the motion of a near-autonomous time-periodic two-degree-of-freedom Hamiltonian system in a neighborhood of trivial equilibrium being stable in the linear approximation. The third-order double resonance (fundamental and Raman) is assumed to occur in the system, at that Raman resonance can be strong or weak. In both cases the equilibrium considered is unstable in a full nonlinear system. Normalization of Hamiltonians of the perturbed motion is carried out in the terms up to the fourth order with respect to disturbance, taking into account the existing resonances. The problem of the existence and number of equilibrium positions of the corresponding approximate (model) systems is solved, and sufficient and necessary conditions for their stability are obtained. By Poincare's small parameter method, periodic motions of the initial full systems generated from the equilibrium positions of the model systems are constructed. The question of their stability in the linear approximation is solved. In particular, the conditions of the existence of stable (in the linear approximation) periodic motions in a small neighborhood of the unstable trivial equilibrium are obtained.

Keywords: Hamiltonian system, multiple resonance, stability, periodic motion
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2016, vol. 26, issue 3, pp. 418-438

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref