Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Асимптотически устойчивые множества управляемых систем с импульсным воздействием
Получены достаточные условия асимптотической устойчивости и слабой асимптотической устойчивости заданного множества $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ относительно управляемой системы с импульсным воздействием в предположении, что функция $t\mapsto M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и замкнуто. Также получены условия, при которых для каждого решения $x(t,x_0)$ управляемой системы, выходящего из достаточно малой окрестности множества $M(t_0),$ найдется момент времени $t^*$ такой, что точка $(t,x(t,x_0))$ принадлежит $\mathfrak M$ при всех $t\in [t^*,+\infty).$ Некоторые из представленных здесь утверждений являются аналогами результатов Е.А. Панасенко и Е.Л. Тонкова для систем с импульсами, в других утверждениях существенно используется специфика импульсного воздействия. Результаты работы проиллюстрированы на примере модели «вредитель-биоагент» с импульсным управлением в предположении, что вбросы биоагентов (природных врагов данных вредителей) происходят в фиксированные моменты времени и количество вредителей, потребляемых в среднем одним биоагентом за единицу времени, задается трофической функцией Холлинга. Получены условия асимптотической устойчивости множества $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ где $x_1={y_1}/{K},$ $y_1$ - размер популяции вредителей, $K$ - емкость среды.
Asymptotically stable sets of control systems with impulse actions
We get sufficient conditions for asymptotic stability and weak asymptotic stability of a given set $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ with respect to the control system with impulse actions. We assume that the function $t\mapsto M(t)$ is continuous in the Hausdorff metric and for each $t \in [t_0,+\infty)$ the set $M(t)$ is nonempty and closed. Also, we obtain conditions under which for every solution $x(t,x_0)$ of the control system that leaves a sufficiently small neighborhood of the set $M(t_0)$ there exists an instant $t^*$ such that point $(t,x(t,x_0))$ belongs to $\mathfrak M$ for all $t\in[t^*,+\infty).$ Some of the statements presented here are analogues of the results obtained by E.A. Panasenko and E.L.Tonkov for systems with impulses, and in other statements the specificity of impulse actions is essentially used. The results of this paper are illustrated by the “pest-bioagents” model with impulse control and we assume that the addition of bioagents (natural enemies of the given pests) occur at fixed instants of time and the number of pests consumed on average by one biological agent per unit time is given by the trophic Holling function. We obtain conditions for asymptotic stability of the set $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ where $x_1=y_1/K,$ $y_1$ is the size of the population of pests and $K$ is the capacity of environment.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.