Текущий выпуск Выпуск 1, 2021 Том 31

О сходимости барицентрического метода в решении внутренних задач Дирихле и Неймана в $\mathbb{R}^2$ для уравнения Гельмгольца

 pdf (268K)

Рассмотрено применение барицентрического метода для численного решения задач Дирихле и Неймана для уравнения Гельмгольца в ограниченной односвязной области $\Omega\subset\mathbb{R}^2$. Основное допущение в решении заключается в задании границы $\Omega$ в кусочно-линейном представлении. Отличительная особенность барицентрического метода состоит в порядке формирования глобальной системы векторных базисных функций для $\Omega$ через барицентрические координаты. Установлены существование и единственность решения задач Дирихле и Неймана для уравнения Гельмгольца барицентрическим методом и определена оценка скорости сходимости. Уточнены особенности алгоритмической реализации метода.

Ключевые слова: внутренние задачи Дирихле и Неймана, уравнение Гельмгольца, многоугольник произвольной формы, барицентрический метод, метод Галёркина, барицентрические координаты, оценка сходимости
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2021, т. 31, вып. 1, с. 3-18
DOI: 10.35634/vm210101

On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $\mathbb{R}^2$ for the Helmholtz equation

The application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.

Keywords: internal Dirichlet and Neumann problems, Helmholtz equation, arbitrary polygon, barycentric method, Galerkin method, barycentric coordinates, convergence estimation
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2021, vol. 31, issue 1, pp. 3-18

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref