Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.
-
Рассматривается периодический оператор Шредингера ĤA+V в Rn, n≥3. На векторный потенциал A накладываются ограничения, которые, в частности, выполнены, если потенциал A принадлежит классу Соболева Hqloc(Rn;Rn), 2q>n-1, а также в случае, когда Σ ||AN||Cn<+∞, где AN – коэффициенты Фурье потенциала A. Доказана абсолютная непрерывность спектра периодического оператора Шредингера ĤA+V для скалярных потенциалов V из пространства Морри L2,p(Rn), p∈((n-1)/2,n/2], для которых ||ΧBr(x)V||2,p≤ε0 при всех достаточно малых r>0 и всех x∈Rn, где число ε0=ε0(n,p;A)>0 зависит от векторного потенциала A, Br(x) – замкнутый шар радиуса r>0 с центром в точке x∈Rn, ΧΚ – характеристическая функция множества K⊆Rn, ||.||2,p –
норма в пространстве L2,p(Rn). Пусть K – элементарная ячейка решетки периодов потенциалов A и V, K* – элементарная ячейка обратной решетки. Оператор ĤA+V унитарно эквивалентен прямому интегралу операторов ĤA(k)+V, k∈2πK*, действующих в L2(K). Последние операторы рассматриваются также при комплексных векторах k+ik’∈Cn. При доказательстве абсолютной непрерывности спектра оператора ĤA+V используется метод Томаса и оценки резольвенты операторов ĤA(k+ik’)+V при определенным образом выбираемых комплексных векторах k+ik’∈Cn с достаточно большой мнимой частью k’. -
Задача рассеяния для дискретного оператора Шредингера с «резонансным» потенциалом на графе, с. 29-34Рассматривается дискретный оператор Шредингера на графе, являющийся гамильтонианом электрона, в приближении сильной связи в системе, состоящей из квантовой проволоки и двух внедренных квантовых точек. Данный оператор описывает двухбарьерную резонансную наноструктуру, причем один из барьеров представляет собой нелокальный потенциал. Описан существенный и абсолютно непрерывный спектр оператора. Изучается задача рассеяния в стационарной постановке для двух возможных направлений распространения частицы. Найдены условия полного отражения и полного прохождения.
-
Доказана абсолютная непрерывность спектра многомерного периодического оператора Дирака для некоторых классов разрывных магнитных потенциалов.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.