Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'гармоническое уравнение':
Найдено статей: 5
  1. Натия Н., Амуля Смырна Ч.
    Бесконечные сети Шрёдингера, с. 640-650

    Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.

  2. Рассматривается движение твердого тела в однородном поле тяжести в случае высокочастотных вертикальных гармонических колебаний малой амплитуды одной из его точек (точки подвеса). Предполагается, что центр масс тела лежит на одной из главных осей инерции для точки подвеса. В рамках приближенной автономной системы дифференциальных уравнений, записанной в форме канонических уравнений Гамильтона, рассматриваются частные движения тела - перманентные вращения, происходящие вокруг вертикально расположенных осей из главных плоскостей инерции, примыкающих к указанной главной оси. Такие перманентные вращения существуют и для тела с неподвижной точкой подвеса. Исследуется влияние быстрых вибраций на устойчивость этих вращений. Для всех допустимых значений четырехмерного пространства параметров (двух инерционных параметров и параметров, характеризующих частоту вибраций и угловую скорость вращения) выписаны и проиллюстрированы необходимые и в ряде случаев достаточные условия устойчивости, рассматриваемые как условия устойчивости соответствующих положений равновесия приведенной (по Раусу) автономной гамильтоновой системы с двумя степенями свободы. Проведен нелинейный анализ устойчивости для двух частных значений инерционного параметра, отвечающих динамически симметричному телу и телу с геометрией масс для случая Бобылева-Стеклова. Рассмотрены нерезонансный и резонансный случаи, а также случаи вырождения. Проведено сравнение полученных результатов устойчивости с соответствующими результатами для тела с неподвижной точкой.

  3. Рассмотрено движение динамически симметричного твердого тела в однородном поле тяжести в случае высокочастотных вертикальных гармонических колебаний малой амплитуды одной из его точек (точки подвеса). Исследование проводится в рамках приближенной автономной системы дифференциальных уравнений, записанной в форме канонических уравнений Гамильтона. Дано подробное описание допустимых дуг перманентных вращений тела, происходящих вокруг вертикально расположенных осей. Выявлены случаи перманентных вращений, обусловленные вибрациями и не существующие для тела с неподвижной точкой. Для одного из таких случаев, когда ось вращения лежит в главной плоскости инерции, не содержащей центр масс тела и не совпадающей с экваториальной плоскостью инерции, проведен полный нелинейный анализ устойчивости соответствующего положения равновесия приведенной системы с двумя степенями свободы. В трехмерном пространстве параметров задачи найдены области устойчивости в линейном приближении. Рассмотрены случаи резонансов третьего и четвертого порядков, а также случаи вырождения.

  4. Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.

  5. Рассматривается плоская ограниченная эллиптическая задача трех тел. Изучаются движения, близкие к треугольным точкам либрации. Предполагается, что параметры задачи (эксцентриситет орбиты основных притягивающих тел и отношение их масс) лежат внутри области устойчивости в первом приближении точек либрации. Величина эксцентриситета считается малой. С точностью до второй степени эксцентриситета включительно получено аналитическое представление для линейного, периодического по истинной аномалии, канонического преобразования, приводящего функцию Гамильтона линеаризованных уравнений возмущенного движения в окрестности точек либрации к их вещественной нормальной форме. Эта форма соответствует двум, не связанным один с другим, гармоническим осцилляторам, частоты которых зависят от параметров задачи. При построении нормализующего канонического преобразования используется метод Депри-Хори теории возмущений гамильтоновых систем. Его реализация в конкретной рассматриваемой задаче существенно опирается на компьютерные системы аналитических вычислений.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref