Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Бифуркационное исследование перехода к хаосу в колебательной системе движения пластинки в жидкости, с. 3-18Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.
-
Хаотическое рассеяние точечного вихря круговым цилиндрическим твердым телом, движущимся в поле тяжести, с. 184-196В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.
-
В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.
-
В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.
-
Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.
-
Рассмотрена динамика системы, описывающей управляемое движение неуравновешнного кругового профиля в присутствии точечных вихрей. Управление движением профиля реализуется за счет периодического изменения положения центра масс, гиростатического момента и момента инерции системы. Предложен вывод уравнений движения на основе подхода Седова, уравнения движения представлены в гамильтоновой форме. Рассмотрено периодическое возмущение известного интегрируемого случая.
-
В работе предложен общий топологический подход к исследованию устойчивости периодических решений интегрируемых динамических систем с двумя степенями свободы. Развиваемые методы проиллюстрированы на примерах нескольких интегрируемых задач, связанных с классическими уравнениями Эйлера—Пуассона, движением твердого тела в жидкости, а также динамикой газообразных расширяющихся эллипсоидов. Данные топологические методы позволяют также отыскивать невырожденные периодические решения интегрируемых систем, что является особенно актуальным в тех случаях, когда общее решение, например, при помощи разделения переменных неизвестно.
-
Данная работа посвящена экспериментальному определению присоединенных масс тел, погруженных в жидкость полностью или частично. В работе приводятся схема экспериментальной установки, методика проведения эксперимента и математическая модель, положенная в основу методики. Метод определения присоединенной массы основан на буксировке тела при известной тяговой силе. Из теории известно, что понятие присоединенной массы возникает в предположении потенциальности обтекания тела жидкостью. В связи с этим мы дополнительно проводим PIV-визуализацию потоков, генерируемых буксируемым телом, и определяется участок траектории, на котором обтекание можно считать потенциальным. Для верификации методики проведен ряд экспериментов по определению присоединенных масс эллипсоида вращения. Результаты измерений согласуются с известными справочными данными. На основе разработанной методики определены присоединенные массы безвинтового надводного робота.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.