Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'дельта-функция':
Найдено статей: 3
  1. В ограниченной по переменной $z$ области, имеющей слабо горизонтальную неоднородность, исследуется задача определения сверточного ядра $k(t,x)$, $t>0$, $x\in {\Bbb R}$, входящего в гиперболическое интегро-дифференциальное уравнение второго порядка. Предполагается, что это ядро слабо зависит от переменной $x$ и разлагается в степенной ряд по степеням малого параметра $\varepsilon$. Построен метод нахождения первых двух коэффициентов $k_{0}(t)$, $k_{1}(t)$ этого разложения по заданным первым двум моментам по переменной $x$ решения прямой задачи при $z=0$.

  2. В статье исследуются вопросы устойчивости решений обратных задач для двух интегро-дифференциальных уравнений гиперболического типа. Теоремы существования и единственности решений этих задач, в малом, были получены и опубликованы автором ранее. Поэтому в данной работе рассматриваются исключительно вопросы устойчивости этих решений. В теореме 1 доказывается условная устойчивость решения обратной задачи об определении ядра интеграла для интегро-дифференциального уравнения

    $$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$ с начальными данными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta(x)$ и по дополнительной информации о решении прямой задачи $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ С этой целью обратная задача заменяется эквивалентной системой интегральных уравнений относительно неизвестных функций. Для доказательства теоремы применяется метод последовательных приближений. Далее, используются метод оценок интегральных уравнений и неравенство Гронуолла.

    Аналогично доказываемая теорема 2 посвящается оценке условной устойчивости решения обратной задачи об определении ядра интеграла для того же интегро-дифференциального уравнения, в ограниченной по $x$ области $x\in(0,l),$ с начальными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta'(x)$ и граничными условиями $(u_x-hu)\big|_{x=0}=0,$ $(u_x+Hu)\big|_{x=l}=0$, $t>0$. В этом случае дополнительная информация о решении прямой задачи задается в виде $u(0,t)=f(t)$, $t\geqslant 0$. Здесь $h,H$ - вещественные и конечные числа.

  3. Рассматривается бесконечная неэрмитовая конечно-разностная модель Китаева, моделирующая одномерную сверхпроводящую проволоку. Неэрмитовость вводится в модель с помощью дельта-образных мнимых потенциалов, которые имитируют усиления и потери амплитуд майорановских локализованных состояний (МЛС). В строгом математическом подходе находятся условия существования собственных функций, описывающих МЛС, а также зависимость собственных функций от параметров модели и влияние неэрмитовости на МЛС. Рассматривается два режима, вблизи топологической межфазной границы и при нулевом химическом потенциале.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref