Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'интегральные ограничения':
Найдено статей: 15
  1. Понятие равномерной полной управляемости линейной системы, введенное Р. Калманом, играет ключевую роль в задачах управления асимптотическими характеристиками линейных систем управления, замкнутых по принципу линейной обратной связи. Е.Л. Тонков установил необходимое и достаточное условие равномерной полной управляемости для систем с кусочно-непрерывными и ограниченными коэффициентами. Критерий Тонкова можно положить в основу определения равномерной полной управляемости. Если условия на коэффициенты системы ослабить, то определения Калмана и Тонкова перестают совпадать. Здесь установлены необходимые условия и достаточные условия равномерной полной управляемости по Калману и по Тонкову для систем с измеримыми, локально суммируемыми коэффициентами. Введено определение равномерной полной управляемости, которое обобщает определение Тонкова и совпадает с определением Калмана, если матрица $B(\cdot)$ ограничена. Доказаны некоторые известные результаты об управляемости линейных систем, в которых можно ослабить требования на коэффициенты. Доказано, что если линейная управляемая система $\dot x=A(t)x+B(t)u$, $x\in\mathbb{R}^n$, $u\in\mathbb{R}^m$, с измеримой ограниченной матрицей $B(\cdot)$ равномерно вполне управляема в смысле Калмана, то для любой измеримой и интегрально ограниченной $m\times n$-матричной функции $Q(\cdot)$ система $\dot x=(A(t)+B(t)Q(t))x+B(t)u$ равномерно вполне управляема по Калману.

  2. Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).

  3. Построен характеристический многочлен спектральной задачи дифференциального уравнения первого порядка на отрезке со спектральным параметром в краевом условии с интегральным возмущением, которое является целой аналитической функцией от спектрального параметра. На основе формулы характеристического многочлена доказаны выводы об асимптотике спектра возмущенной спектральной задачи.

  4. В статье рассматривается задача о приведении движения нелинейной управляемой системы в начало координат при заданном интегральном ресурсе управления на конечном промежутке времени. Исследуется вопрос о построении локального синтеза управления, решающего задачу, в предположении, что промежуток времени, в течение которого осуществляется перевод системы, достаточно мал. Указаны достаточные условия, при выполнении которых задачу можно решить путем приближенной замены нелинейной системы ее линеаризацией в окрестности начала координат.

  5. Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$ \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t),$ $t\geqslant 0.$ Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad\qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы $(2)$ означает существование такой матричной функции $U(t),$ $t\geqslant 0,$ которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N,$ $\det H_k>0.$ Представленная задача решается в предположении равномерной полной управляемости системы $(1),$ соответствующей замкнутой системе $(2),$ т.е. при условии существования таких $\sigma>0$ и $\gamma>0,$ что при любых начальном моменте времени $t_0\geqslant 0$ и начальном состоянии $x(t_0)=x_0\in \mathbb{R}^n$ системы (1) на отрезке $[t_0,t_0+\sigma]$ найдется измеримое и ограниченное векторное управление $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ переводящее вектор начального состояния этой системы в ноль на данном отрезке. Доказано, что в двумерном случае, т.е. при $n=2,$ свойство равномерной полной управляемости системы $(1)$ является достаточным условием равномерной глобальной достижимости соответствующей системы $(2).$

  6. Установлен критерий равномерной полной и дифференциальной управляемости линейной системы с локально интегрируемыми по Лебегу и интегрально ограниченными коэффициентами, в случае когда критерий Калмана неприменим. Получены условия дифференциальной управляемости квазидифференциального уравнения.

  7. Проблема голоморфного продолжения функций, определенных на границе области, в эту область актуальна в многомерном комплексном анализе. Она имеет долгую историю, начиная с работ Пуанкаре и Гартогса. В статье рассматриваются непрерывные функции, определенные на границе ограниченной области $ D $ в $ \mathbb C ^ n $, $ n> 1 $, с кусочно-гладкой границей и обладающие обобщенным граничным свойством Мореры вдоль семейства комплексных прямых, которые пересекают границу области. Свойство Мореры состоит в том, что интеграл заданной функции равен нулю по пересечению границы области с комплексной прямой. Показано, что такие функции голоморфно продолжаются в область $ D $. Для функций одной комплексной переменной свойство Мореры, очевидно, не влечет голоморфного продолжения. Поэтому эту проблему следует рассматривать только в многомерном случае $ (n> 1) $. Основным методом изучения таких функций является метод многомерных интегральных представлений, в частности интегрального представления Бохнера-Мартинелли.

  8. Исследована выпуклость множеств достижимости по части координат нелинейных систем с интегральными ограничениями на управление на малых промежутках времени. Доказаны достаточные условия выпуклости, имеющие вид ограничений на асимптотику собственных чисел грамиана управляемости линеаризованной системы по части координат. В качестве примеров, в статье описаны две нелинейные системы третьего порядка, в одной из которых линеаризованная вдоль траектории, порожденной нулевым управлением, система неуправляема, а в другом управляема. Исследованы достаточные условия выпуклости проекций множеств достижимости. Проведено численное моделирование, продемонстрировавшее невыпуклость некоторых проекций даже для малых длин временного промежутка.

  9. Изучается дифференциальная игра преследования со многими преследователями и одним убегающим. Игра описывается бесконечной системой $m$ инерционных уравнений. По определению преследование завершается, если состояние одной из систем и его производная равны нулю в некоторый момент времени. В литературе такое условие завершения игры называется мягкой посадкой. В терминах энергий игроков получено условие, которое является достаточным для завершения преследования в игре. Также построены стратегии преследующих, гарантирующие завершение преследования в игре.

  10.  

    Исследуются условия, при которых управляемая система  = f(t, x, u), uU(t, x), вместе с замыканием множества сдвигов (относительно времени t) управляемой системы обладает свойством равномерной локальной или равномерной глобальной достижимости на заданном отрезке времени. Не предполагается, что функция (t, x) → U(t, x), задающая геометрические ограничения на допустимые управления u(t, x) ∈ U(t, x), имеет выпуклые компактные образы и не предполагается, что соответствующее управляемой системе дифференциальное включение имеет выпуклые образы.

     

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref