Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'интерпретация данных':
Найдено статей: 9
  1. В данной работе представлен новый подход к интерпретации логических формул для синтеза алгоритмов и программ. Предложенный метод сочетает в себе черты реализации Клини и интерпретации Гёделя «диалектика», но не опирается на них непосредственно. Рассматривается простой вариант позитивного языка логики предикатов без функций, с конъюнкцией, дизъюнкцией, импликацией и кванторами всеобщности и существования. Описана новая реализационная семантика формул и секвенций, в которой рассматривается не просто реализация формулы, а реализация с дополнительной поддержкой. Реализация примерно соответствует реализации Клини. Поддержка предоставляет дополнительные данные в пользу того, что реализация корректна. Поддержка должна подтвердить, что реализация работает корректно для формулы в любых корректных условиях применения. Представлен язык доказательств, для которого доказана теорема о корректности, показывающая, что любая выводимая секвенция имеет реализацию и поддержку, подтверждающую, что эта реализация работает правильно для этой формулы в любых корректных условиях при подходящем интерпретаторе используемых программ.

  2. Рассматривается новое конструктивное понимание логических формул, согласованное с интуицией и с традиционными средствами конструктивного логического вывода. Новое понимание логически проще традиционной реализуемости (в смысле кванторной глубины), но является также естественным с точки зрения алгоритмического решения задач. Это понимание, кроме свидетельства (реализации, подтверждения) понимаемой формулы, привлекает понятия теста (противодействия, препятствия) этой реализации на данной формуле. Для понимания формулы $A$ рассматриваются предложения вида $a:A:b.$ Это предложение означает, что объект $a$ (выдвигаемый в подтверждение формулы $A$) выигрывает у объекта $b$ (который противодействует выполнению формулы $A$) формулу $A$ в процессе осуществления специальной процедуры сопоставления этих объектов друг с другом и с данной формулой. Данная процедура может считаться некоторой процедурой арбитража для вынесения необходимого решения. Базис процедуры арбитража для атомарных формул задается интерпретацией языка. Процедура для сложных предложений задается специальными правилами определения смысла логических связок. При наиболее естественном определении процедура арбитража имеет полиномиальную временную сложность. Формула $A$ считается истинной в новом смысле этого слова, если имеется подтверждение, выигрывающее ее у всех возможных противодействий. Рассматривается логический язык без отрицаний. Доказана теорема о корректности в новом смысле традиционных интуиционистских аксиом и правил вывода. При этом рассматривается секвенциальное логическое исчисление, ориентированное на обратный метод поиска вывода.

  3. В задачах принятия решений, когда лицо, принимающее решение, получает информацию о возможном выигрыше в результате выбора стратегии в виде нечеткого числа, возникает проблема сравнения нечетких чисел. При выборе того или иного метода сравнения нечетких чисел нужно исходить из специфики задачи. Предлагаемый в статье подход сравнения нечетких чисел основан на сравнении множеств уровня. Эти множества уровня являются отрезками. При сравнении отрезков, в которых может находиться величина выигрыша лица, принимающего решение, берется один из критериев, применяемых в задачах принятия решения при наличии неопределенности (критерии Вальда, Сэвиджа, Гурвица и другие). Результаты сравнения по множествам уровня усредняются. Нечеткие числа сравниваются с помощью этих средних значений. Дана геометрическая интерпретация полученного результата, которая сводит сравнение нечетких чисел к сравнению величин площадей соответствующих фигур, образованных графиками функций принадлежности нечетких чисел. В качестве примера рассмотрены нечеткие числа с колоколообразными и трапецеидальными функциями принадлежности.

  4. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Пусть значения параметров задачи таковы, что в системе реализуется одновременно двойной комбинационный резонанс третьего порядка и резонанс четвертого порядка. Решается вопрос о существовании и устойчивости резонансных периодических решений системы. Исследование проводится на примере задачи о движении динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите. В качестве невозмущенных рассматриваются периодические движения спутника, рождающиеся из его стационарных вращений на круговой орбите (гиперболоидальной и конической прецессий), для резонансных значений параметров. Проведена нормализация гамильтонианов возмущенного движения, определены положения равновесия приближенных (модельных) систем, методом Пуанкаре построены соответствующие резонансные периодические движения спутника в окрестности указанных невозмущенных движений, дана их геометрическая интерпретация. Выявлены неустойчивые периодические движения, а также движения, являющиеся устойчивыми для большинства (в смысле меры Лебега) начальных условий и формально устойчивыми.

  5. Рассматривается твердое тело-гиростат, движущееся по круговой кеплеровой околоземной орбите в плоскости геомагнитного экватора. Предполагается, что тело снабжено маховиком, обладает электростатическим зарядом и собственным магнитным моментом. Изучается вращательное движение гиростата относительно его центра масс под действием лоренцева и магнитного моментов. Показано, что при определенных предположениях о наличии некоторой динамической и электромагнитной симметрии гиростата решение задачи сводится к квадратурам путем построения четырех первых интегралов. Проведено исследование движения оси симметрии гиростата и дана его геометрическая интерпретация.

  6. Изучение эмоционального анализа текста - сегодня одно из самых интересных и развивающихся направлений. Эмоции, представленные в тексте, и их анализ - это особая тема нашего интереса. В этой статье изучаются различные модальные суждения в логике в связи с анализом эмоций и построением модели эмоций, пригодной для логического анализа с использованием модальных связок. Предлагаются интерпретации некоторых простых модальностей в связи с информационными технологиями для анализа эмоций в текстах. Расширяется понятие логики возможных миров так, чтобы охватить логический анализ эмоциональных оценок. Предлагаемые модальности объясняют эмоциональные оценки с позиции логики воспринимаемого состояния окружающей среды. В работе рассматриваются логические свойства эмоциональных модальностей, логика эмоциональных оценок и определение различных модальностей для анализа эмоций. Данная методология предназначена для будущего использования логических модальностей при исследованиях, направленных на анализ эмоций, выраженных в текстах на естественном языке.

  7. Рассматриваются движения неавтономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется кратный (двойной или тройной) резонанс четвертого порядка. Дан перечень всех возможных наборов характеристических показателей, соответствующих указанным резонансным случаям. Получены пять качественно различных приближенных (модельных) гамильтонианов, отвечающих данным наборам. Для всех рассматриваемых случаев кратных резонансов получены достаточные условия формальной устойчивости тривиального равновесия полной системы, записанные в виде ограничений на коэффициенты форм четвертой степени в нормализованных гамильтонианах возмущенного движения, дана графическая интерпретация этих условий. Показано, что полученные области формальной устойчивости содержатся внутри областей устойчивости каждого имеющегося сильного резонанса, рассматриваемого по отдельности, а резонансные коэффициенты, отвечающие слабым резонансам, должны принимать значения из ограниченного диапазона. Рассмотрены некоторые вопросы о неустойчивости тривиального равновесия системы в случаях кратных резонансов четвертого порядка. Найденные условия формальной устойчивости проверены в точках кратных резонансов четвертого порядка в задаче об устойчивости цилиндрической прецессии динамически симметричного спутника-пластинки в центральном ньютоновском гравитационном поле на эллиптической орбите произвольного эксцентриситета.

  8. Обсуждается проблема корректного использования программных пакетов, в которых реализованы методы решения некорректных задач. К некорректным задачам относится большинство задач обработки экспериментальных данных. При использовании методов решения некорректных задач существует проблема неединственности решения, которая решается путем введения априорной информации. Получение априорной информации возможно разными способами, но количественные оценки предполагают использование дополнительных методов анализа данных. Очевидно, что дополнительные методы не должны быть сложнее и трудозатратнее основного метода обработки данных. На примере использования программы анализа данных электроразведки RES3DINV продемонстрирована роль априорной информации для получения достоверных результатов. Программный пакет RES3DINV применяется для построения модели грунта по измеренным значениям удельного сопротивления методами электроразведки. При использовании реализованного в программном пакете метода инверсии необходимо задавать входные параметры, характеризующие геометрические размеры объекта аномального сопротивления, которые априори, как правило, неизвестны. На модельных объектах продемонстрировано как влияет некорректное задание входных параметров на результат интерпретации данных. Показано, что в качестве способа получения априорной информации можно использовать метод векторного анализа. Этот метод позволяет получать оценки геометрических параметров аномального объекта и не требует больших временных и ресурсных затрат, и может быть использован непосредственно на месте полевых экспериментальных измерений.

  9. Рассматривается феноменологическая модель термомеханического поведения полимерных материалов в диапазоне температур, включающем релаксационный переход в стеклообразное состояние (стеклование) и обратный переход (размягчение). Дана наглядная интерпретация закономерностей формирования напряженно-деформированного состояния стеклующегося материала с привлечением возможностей предложенной механической модели. Сформулирована система экспериментов для идентификации материальных функций и констант. Проведены натурные испытания для двух типов стеклующихся полимеров - эпоксидной смолы и полиметилметакрилата.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref