Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'конфликтно управляемая система':
Найдено статей: 4
  1. Для конфликтно-управляемой динамической системы, описываемой функционально-дифференциальным уравнением нейтрального типа в форме Дж. Хейла, рассматривается дифференциальная игра с показателем качества, который оценивает историю движения, реализующуюся к терминальному моменту времени, а также включает интегральную оценку реализаций управлений игроков. Игра формализуется в классе чистых позиционных стратегий. На основе понятия коинвариантных производных для функционала цены этой игры выписывается функциональное уравнение Гамильтона-Якоби. Доказывается, во-первых, что решение этого уравнения, удовлетворяющее определенным условиям гладкости, является ценой исходной дифференциальной игры, а во-вторых, что цена в точках дифференцируемости удовлетворяет выписанному уравнению Гамильтона-Якоби. Таким образом, это уравнение можно трактовать как уравнение Гамильтона-Якоби-Айзекса-Беллмана для систем нейтрального типа.

  2. В данной работе изучаются игровые задачи преследования, описываемые системой уравнений с запаздывающим аргументом при интегральных ограничениях на управления игроков. В предлагаемой схеме используются идеи метода разрешающих функций. Предлагаются модификации методов (то есть первого и так называемого третьего методов) преследования в случае, когда на управления игроков наложены интегральные ограничения. Получены достаточные условия для возможности завершения преследования за конечное время.

  3. Ушаков В.Н., Матвийчук А.Р., Лебедев П.Д.
    Дефект стабильности в игровой задаче о сближении в момент, с. 87-103

    Работа посвящена изучению множеств в пространстве позиций игровой задачи о сближении, не обладающих, вообще говоря, свойством стабильности. Изучается введённое ранее авторами понятие дефекта стабильности. В представленных в работе примерах строятся с использованием  понятия дефекта стабильности множества в пространстве позиций, имеющие довольно простую геометрию, и экстремальное прицеливание на которые обеспечивает первому игроку приведение движения конфликтно управляемой системы в малую окрестность целевого множества.

  4. Исследуется свойство стабильности в игровой задаче сближения конфликтно- управляемой системы с целевым множеством в фиксированный момент окончания. Для множеств в пространстве позиций игры вводится понятие дефекта стабильности.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref