Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'магнитное поле':
Найдено статей: 6
  1. Работа посвящена изучению оценок скалярных произведений векторных полей и их применению при доказательстве разрешимости задач математической физики. В работе доказаны оценки скалярных произведений векторных полей в весовых функциональных пространствах суммируемых функций. В качестве примера применения таких оценок доказана разрешимость задачи об определении стационарного магнитного поля в трёхмерном евклидовом пространстве, содержащем ограниченную проводящую область. Также показана связь предложенной постановки задачи и соответствующей вариационной формулировки. Изучена возможность определения остальных неизвестных функций (электрического поля, объёмной плотности электрических зарядов) внутри проводящей подобласти.

  2. Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.

  3. В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.

  4. Рассматривается твердое тело-гиростат, движущееся по круговой кеплеровой околоземной орбите в плоскости геомагнитного экватора. Предполагается, что тело снабжено маховиком, обладает электростатическим зарядом и собственным магнитным моментом. Изучается вращательное движение гиростата относительно его центра масс под действием лоренцева и магнитного моментов. Показано, что при определенных предположениях о наличии некоторой динамической и электромагнитной симметрии гиростата решение задачи сводится к квадратурам путем построения четырех первых интегралов. Проведено исследование движения оси симметрии гиростата и дана его геометрическая интерпретация.

  5. Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.

  6. В статье исследованы условия существования двух новых классов полиномиальных решений дифференциальных уравнений задачи о движении гиростата с неподвижной точкой в магнитном поле с учетом эффекта Барнетта–Лондона. Общая особенность структуры этих классов заключается в том, что функции, задающие инвариантные соотношения для компонент единичного вектора оси симметрии действующих силовых полей, являются либо рациональными функциями от первой компоненты указанного вектора, либо от вспомогательной переменной. Построены три новых частных решения рассматриваемых полиномиальных классов. Эти решения описываются функциями, полученными обращением гиперэллиптических интегралов. Доказано, что еще одно построенное решение исследуемых полиномиальных структур, для которого движение гиростата обладает свойством прецессионности, является частным случаем известного решения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref