Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.
-
В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.
-
В данной статье изучена задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде. На основании свойства полноты систем собственных функций двух одномерных спектральных задач доказана теорема единственности. Для доказательства существования решения задачи использован спектральный метод Фурье, основанный на разделении переменных. Решение поставленной задачи построено в виде суммы двойного ряда Фурье-Бесселя. При обосновании равномерной сходимости построенного ряда использованы асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, позволившие доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.
-
В работе исследована одна обратная краевая задача для эллиптического уравнения второго порядка с дополнительным интегральным условием первого рода. Для рассматриваемой обратной краевой задачи вводится определение классического решения. С помощью метода Фурье задача сводится к решению системы интегральных уравнений. С помощью метода сжатых отображений доказывается существование и единственность решения системы интегральных уравнений. Далее доказывается существование и единственность классического решения исходной задачи.
-
Рассматривается периодический оператор Шредингера ĤA+V в Rn, n≥3. На векторный потенциал A накладываются ограничения, которые, в частности, выполнены, если потенциал A принадлежит классу Соболева Hqloc(Rn;Rn), 2q>n-1, а также в случае, когда Σ ||AN||Cn<+∞, где AN – коэффициенты Фурье потенциала A. Доказана абсолютная непрерывность спектра периодического оператора Шредингера ĤA+V для скалярных потенциалов V из пространства Морри L2,p(Rn), p∈((n-1)/2,n/2], для которых ||ΧBr(x)V||2,p≤ε0 при всех достаточно малых r>0 и всех x∈Rn, где число ε0=ε0(n,p;A)>0 зависит от векторного потенциала A, Br(x) – замкнутый шар радиуса r>0 с центром в точке x∈Rn, ΧΚ – характеристическая функция множества K⊆Rn, ||.||2,p –
норма в пространстве L2,p(Rn). Пусть K – элементарная ячейка решетки периодов потенциалов A и V, K* – элементарная ячейка обратной решетки. Оператор ĤA+V унитарно эквивалентен прямому интегралу операторов ĤA(k)+V, k∈2πK*, действующих в L2(K). Последние операторы рассматриваются также при комплексных векторах k+ik’∈Cn. При доказательстве абсолютной непрерывности спектра оператора ĤA+V используется метод Томаса и оценки резольвенты операторов ĤA(k+ik’)+V при определенным образом выбираемых комплексных векторах k+ik’∈Cn с достаточно большой мнимой частью k’. -
В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.
-
Обратная задача для системы вязкоупругости в анизотропных средах с тетрагональной формой модуля упругости, с. 581-600Для приведенной канонической системы интегро-дифференциальных уравнений вязкоупругости рассмотрены прямая и обратная задачи определения поля скоростей упругих волн и матрицы релаксации. Задачи заменены замкнутой системой интегральных уравнений типа Вольтерра второго рода относительно преобразования Фурье по переменным $x_{1}$ и $x_{2}$ для решения прямой и обратной задачи. Далее к этой системе применяется метод сжимающих отображений в пространстве непрерывных функций с весовой нормой. В работе доказаны теоремы о глобальные существования и единственности решений задач.
-
В этой статье рассматриваются обратные задачи для уравнения гиперболического вида четвертого порядка с инволюцией. Существование и единственность решения изучаемых обратных задач устанавливается методом разделения переменных. Для применения метода разделения переменных доказываем базисность Рисса собственных функций дифференциального оператора четвертого порядка с инволюцией в пространстве ${{L}_{2}}(-1,1)$. При доказательстве теорем о существовании и единственности решения широко используем неравенство Бесселя для коэффициентов разложений в ряд Фурье в пространстве ${{L}_{2}}(-1,1)$. Показана существенная зависимость существования решения от коэффициента уравнения $\alpha$. В каждом из случаев $\alpha <-1$, $\alpha >1$, $-1<\alpha <1$ выписаны представления решений в виде рядов Фурье по собственным функциям краевых задач для уравнения четвертого порядка с инволюцией.
-
В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.
-
В данной работе исследуется обратная задача для одномерного интегро-дифференциального уравнения теплопроводности с нелокальными начально-краевыми и интегральными условиями переопределения. Мы использовали метод Фурье и принцип Шаудера для исследования разрешимости прямой задачи. Далее задача сводится к эквивалентной замкнутой системе интегральных уравнений относительно неизвестных функций. Существование и единственность решения интегральных уравнений доказывается с помощью сжимающего отображения. Наконец, с помощью эквивалентности получается существование и единственность классического решения.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.