Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'метод обратной задачи рассеяния':
Найдено статей: 5
  1. В данной работе рассматривается система Каупа–Буссинеска с самосогласованным источником. Показано, что система Каупа–Буссинеска с самосогласованным источником может быть проинтегрирована методом обратной задачи рассеяния. Для решения рассматриваемой задачи используются прямая и обратная задачи рассеяния уравнения Штурма–Лиувилля с потенциалом, зависящим от энергии. Определена временная эволюция данных рассеяния для уравнения Штурма–Лиувилля с энергозависимыми потенциалами, связанными с решением системы Каупа–Буссинеска с самосогласованным источником. Полученные равенства полностью определяют данные рассеяния при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для системы Каупа–Буссинеска с самосогласованным источником.

  2. Работа посвящена интегрированию модифицированного уравнения Кортевега–де Фриза с зависящими от времени коэффициентами, дополнительным членом и интегральным источником в классе быстроубывающих функций с использованием метода обратной задачи рассеяния. В данной работе рассматривается случай, когда оператор Дирака, входящий в пары Лакса, не является самосопряженным, поэтому собственные значения оператора Дирака могут быть кратными. Получена эволюция данных рассеяния для несамосопряженного оператора Дирака, потенциал которого представляет собой решение модифицированного уравнения Кортевега–де Фриза с зависящими от времени коэффициентами, с дополнительным членом и с интегральным источником класса быстроубывающих функций. Приведен пример, иллюстрирующий применение полученных результатов.

  3. Уразбоев Г.У., Бабаджанова А.К., Сапарбаева Д.Р.
    Интегрирование уравнения Гарри Дима с источником интегрального типа, с. 285-295

    В работе выводится эволюция данных рассеяния спектральной задачи, связанной с нелинейным эволюционным уравнением Гарри Дима с самосогласованным источником интегрального типа. Полученные равенства полностью определяют данные рассеяние при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для уравнения Гарри Дима с источником интегрального типа.

  4. В данной работе показано, что уравнение Кортевега-де Фриза отрицательного порядка может быть решено методом обратной задачи рассеяния. Определена эволюция спектральных данных оператора Штурма-Лиувилля с потенциалом, связанным с решением уравнения Кортевега-де Фриза отрицательного порядка. Полученные результаты позволяют применить метод обратной задачи рассеяния для решения рассматриваемой задачи.

  5. В данной работе решается задача Коши для уравнения Кортевега-де Фриза с нагруженными членами и самосогласованным источником в классе быстроубывающих функций. Для решения этой задачи используется метод обратной задачи рассеяния. Получена эволюция данных рассеяния самосопряженного оператора Штурма-Лиувилля, коэффициент которого является решением уравнения Кортевега-де Фриза с нагруженными членами и самосогласованным источником. Приведены примеры, иллюстрирующие применение полученных результатов.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref