Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'множества управляемости':
Найдено статей: 6
  1. В статье рассматривается задача о приведении движения нелинейной управляемой системы в начало координат при заданном интегральном ресурсе управления на конечном промежутке времени. Исследуется вопрос о построении локального синтеза управления, решающего задачу, в предположении, что промежуток времени, в течение которого осуществляется перевод системы, достаточно мал. Указаны достаточные условия, при выполнении которых задачу можно решить путем приближенной замены нелинейной системы ее линеаризацией в окрестности начала координат.

  2. Исследована выпуклость множеств достижимости по части координат нелинейных систем с интегральными ограничениями на управление на малых промежутках времени. Доказаны достаточные условия выпуклости, имеющие вид ограничений на асимптотику собственных чисел грамиана управляемости линеаризованной системы по части координат. В качестве примеров, в статье описаны две нелинейные системы третьего порядка, в одной из которых линеаризованная вдоль траектории, порожденной нулевым управлением, система неуправляема, а в другом управляема. Исследованы достаточные условия выпуклости проекций множеств достижимости. Проведено численное моделирование, продемонстрировавшее невыпуклость некоторых проекций даже для малых длин временного промежутка.

  3. Нарманов А.Я., Абдишукурова Г.М.
    Стабильность вполне управляемых систем, с. 81-93

    Предметом настоящей работы является вопрос о стабильности вполне управляемых систем, заданных на гладком многообразии. Известно, что множества управляемости симметричных систем порождают сингулярные слоения. В случае, когда множества управляемости имеют одинаковую размерность, возникает регулярное слоение. Таким образом, возникает возможность применения методов теории слоений в задачах теории управления. В данной работе излагаются некоторые результаты авторов о возможности применения теорем о стабильности слоев для задачи о стабильности вполне управляемых систем и для изучения геометрии множества достижимости. Гладкость всюду в работе будет означать гладкость класса $C^{\infty}.$

  4. Доказываются достаточные условия поточечной управляемости по нелинейному функционалу для нелинейных распределенных систем, допускающих представление в виде вольтеррова функционально-операторного уравнения в лебеговом пространстве, на заданном множестве D конечномерных аппроксимаций управления. Определяется множество глобальной разрешимости Ω как множество всех управлений из D, для каждого из которых уравнение имеет единственное глобальное решение. В качестве вспомогательного результата, представляющего самостоятельный интерес, доказывается, что при сделанных предположениях выполняется равенство Ω = D. Сведение управляемых распределенных систем к изучаемому функционально-операторному уравнению иллюстрируется на двух примерах: первой краевой задачи для параболического уравнения второго порядка и смешанной задачи для гиперболического уравнения второго порядка; и то, и другое уравнение достаточно общего вида.

  5. Рассматриваются так называемые стандартные управляемые системы, это системы дифференциальных уравнений, заданных на гладких многообразиях конечной размерности, равномерно непрерывные и ограниченные по времени на числовой прямой и локально липшицевы по фазовым переменным. Кроме того, предполагается, что задано компактное множество, задающее геометрические ограничения на допустимые управления и, кроме того, выполнено условие невырожденности, означающее, что для каждой точки фазового многообразия и всех моментов времени найдется управление, при котором значение векторного поля содержится в евклидовом пространстве, касательном к фазовому многообразию в заданной точке.

    При помощи модифицированного метода функции Ляпунова и построения омега-предельного множества соответствующей динамической системы сдвигов сформулированы утверждения о существовании ограниченных на положительной полуоси допустимых управляемых процессов и утверждение о равномерной локальной управляемости соответствующего магистрального процесса.

  6. Обсуждается возможность применения теории слоений в теории управления.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref