Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'множество разрешимости':
Найдено статей: 36
  1. Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.

  2. Изместьев И.В., Ухоботов В.И., Кудрявцев К.Н.
    Численное решение задачи управления параболической системой с помехами, с. 33-47

    Рассматривается управляемая параболическая система, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а заданы только отрезки их изменения. На концах стержней находятся управляемые источники тепла и помехи. Цель выбора управления заключается в том, чтобы привести вектор средних температур стержней в фиксированный момент времени на заданный компакт при любых допустимых функциях плотности внутренних источников тепла и любых допустимых реализациях помех. После замены переменных получена задача управления системой обыкновенных дифференциальных уравнений при наличии неопределенности. Используя численный метод, для этой задачи построено множество разрешимости. Выполнены модельные расчеты.

  3. Работа посвящена развитию полиэдральных методов решения двух задач управления линейными многошаговыми системами с неопределенностями при фазовых ограничениях — задач терминального сближения и уклонения. Они возникают в системах с двумя управлениями, где цель одного — привести траекторию на заданное конечное множество в заданный момент времени, не нарушая фазовых ограничений, цель другого — противоположна. Предполагается, что конечное множество — параллелепипед, управления стеснены параллелотопозначными ограничениями, фазовые ограничения заданы в виде полос. Представлены методы решения обеих задач с использованием полиэдральных (параллелотопо- или параллелепипедо-значных) трубок. Методы решения задачи сближения предложены автором ранее, но здесь исследуются их дополнительные свойства. В частности, для случая без фазовых ограничений найдены гарантированные оценки для траектории, обеспечивающие ее нахождение внутри трубки. Даны удобные достаточные условия, гарантирующие получение невырожденных сечений в процессе вычислений. Для задачи уклонения сначала рассматривается общая схема решения, а затем предлагаются полиэдральные методы. Приводятся и сравниваются целые параметрические семейства внешних и внутренних полиэдральных оценок трубок разрешимости обеих задач. Приведен иллюстрирующий пример.

  4. В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с последействием, непрерывным и дискретным временем и импульсными воздействиями (импульсные гибридные ФДУ). В центре внимания находятся конструкции операторов, позволяющих дать полное описание всех траекторий гибридной системы, и в терминах этих операторов формулировать условия разрешимости задач управления с выбором управлений из различных классов, давать описание (оценки) множеств достижимости при наличии ограничений на управление, а также получать условия разрешимости общих линейных краевых задач. Дается детальное описание всех компонент оператора Коши, изучаются их свойства. Для компонент с непрерывным временем получены условия их непрерывности по второму аргументу, влияющие на возможность выбора класса управляющих воздействий. Упомянутые конструкции систематически используют результаты о матрицах Коши систем ФДУ с непрерывным временем и систем разностных уравнений с дискретным временем.

  5. Петров Н.Н., Щелчков К.А.
    К задаче Черноусько, с. 62-67

    Рассматривается задача простого преследования группой преследователей одного убегающего при условии, что среди преследователей имеются как участники, максимальные скорости которых совпадают с максимальной скоростью убегающего, так и участники, у которых максимальные скорости строго меньше максимальной скорости убегающего, и при этом убегающий не покидает пределы выпуклого многогранного множества. Получены условия, при которых преследователи с меньшими возможностями не влияют на разрешимость задачи уклонения.

  6. Для игровой задачи удержания траекторий абстрактной динамической системы в заданном множестве исследуются соотношения метода программных итераций и конструкций, связанных с построением операторно выпуклой оболочки множества посредством предоболочки. В рамках данных соотношений процедура построения упомянутой оболочки реализуется в форме, двойственной по отношению к процедуре на основе метода программных итераций. Решение задачи удержания определяется в классе многозначных квазистратегий (неупреждающих откликов на реализации неопределенных факторов процесса). Показано, что множество успешной разрешимости задачи удержания определяется в виде предела итерационной процедуры на пространстве множеств, элементами которых являются позиции игры, а также установлена структура разрешающих квазистратегий.

  7. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ где $D^{(\alpha)}f$ - производная по Капуто порядка $\alpha \in (0, 1)$ функции $f$. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Убегающий использует кусочно-программные стратегии, преследователи - кусочно-программные контрстратегии. Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат, $a$ - вещественное число. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования.

  8. Рассматривается стационарная управляемая система в конечномерном эвклидовом пространстве и на конечном промежутке времени. Изучается задача о сближении управляемой системы с компактным целевым множеством на заданном промежутке времени. Один из подходов к решению рассматриваемой задачи о сближении основан на выделении в пространстве позиций множества разрешимости, т.е. множества всех позиций системы, из которых, как из начальных, разрешима задача о сближении. Конструирование множества разрешимости - самостоятельная сложная и трудоемкая задача, которую удается точно решить лишь в редких случаях. В настоящей работе рассматриваются вопросы приближенного конструирования множества разрешимости в задаче о сближении нелинейной стационарной управляемой системы. Эта задача, как известно, тесно сопряжена с задачей конструирования интегральных воронок и трубок траекторий управляемых систем. Интегральные воронки управляемых систем можно приближенно конструировать по (временным) шагам как наборы соответствующих множеств достижимости, поэтому одним из основных элементов разрешающей конструкции в настоящей работе являются множества достижимости. В работе предлагается схема приближенного вычисления множества разрешимости задачи о сближении управляемой стационарной системы на конечном промежутке времени. В основе этой схемы лежит сведение к приближенному вычислению множеств разрешимости конечного числа более простых задач - задач о сближении с целевым множеством в фиксированные моменты времени из заданного временного промежутка. При этом моменты времени должны выбираться достаточно плотно в упомянутом промежутке времени. В работе проведено математическое моделирование задачи о сближении механической системы «Трансляционный осциллятор с ротационным актуатором». Представлено графическое сопровождение решения задачи.

  9. Теория управления - активно развивающийся в настоящее время раздел современной математики. Класс задач, изучаемый в рамках этой теории, достаточно обширен и включает как вопросы, связанные с существованием решений, так и вопросы, связанные с эффективными способами построения управляющих воздействий. Один из подходов к решению задач управления при неполной информации был предложен в основополагающей статье Ю.С. Осипова, опубликованной в журнале «Успехи математических наук» в 2006 году. В дальнейшем этот подход, названный методом пакетов программ, получил развитие, в частности, в статьях, цитированных в настоящей работе. Указанный подход основан на подходящей модификации известного в теории позиционных дифференциальных игр метода неупреждающих стратегий (квазистратегий) для решения задач управления при неизвестном начальном состоянии. Как известно, квазистратегии, отражающие свойства вольтерровости программных реализаций управлений с обратной связью на соответствующие программные возмущения, ориентированы на исследование задач с известным начальным состоянием при наличии неизвестных динамических возмущений. В стандартных задачах управления с неполной информацией динамические возмущения, как правило, отсутствуют, а неполнота информации обусловлена дефицитом информации о начальном состоянии системы. Аналогом свойств неупреждаемости для задач с неизвестными начальными состояниями и стали пакеты программ. Следует отметить, что во всех предыдущих исследованиях, связанных с методом пакетов программ, рассматривались задачи наведения на одно-единственное целевое множество. В настоящей работе для линейной стационарной управляемой динамической системы рассмотрена задача гарантированного наведения на семейство целевых множеств в случае неполной информации о начальном состоянии. Установлен критерий разрешимости этой задачи, основанный на методе пакетов программ, и приведен иллюстрирующий пример.

  10. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей группы убегающих, описываемая системой вида
    $$\dot z_{ij} = u_i - v_j,\quad u_i, v_j \in V.$$
    Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат. Целью группы преследователей является осуществление $r$-кратной поимки не менее $q$ убегающих. Дополнительно предполагается, что убегающие используют программные стратегии, а каждый преследователь может поймать не более одного убегающего. Получены необходимые и достаточные условия разрешимости задачи преследования. Для доказательства используется теорема Холла о системе различных представителей.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref