Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье исследуются свойства функции цены задачи оптимального управления на бесконечном горизонте с неограниченным подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Выводится оценка аппроксимации функции цены в задаче с бесконечным горизонтом значениями функции цены в задачах с удлиняющимся конечным горизонтом. Выявляется структура функции цены через значения стационарной функции цены, зависящей только от фазовой переменной. Дается описание асимптотики роста значений функции цены для функционалов качества различного вида, принятых в экономическом и финансовом моделировании: логарифмических, степенных, экспоненциальных, линейных. Устанавливается свойство непрерывности функции цены и выводятся оценки гёльдеровских параметров непрерывности. Полученные оценки необходимы для разработки сеточных алгоритмов построения функций цены в задачах оптимального управления с бесконечным горизонтом.
-
В работе рассматривается следующая краевая задача для обобщенного уравнения Коши-Римана в единичном круге G={z∈C: |z|<1}: ∂¯zw+b(z)¯w=0, ℜw=g на ∂G, ℑw=h в точке z0=1. Коэффициент b(z) выбирается из некоторого множества SP, построенного с помощью весов, причем SP⊈L2, SP⊄Lq, q>2. В свою очередь, краевое условие g выбирается из пространства, порожденного модулем непрерывности μ, обладающим некоторыми специальными свойствами. Показывается, что задача имеет единственное решение w=w(z) в круге G, причем w∈C(¯G). Кроме того, вне точки z=0 поведение решения задачи определяется тем же самым модулем непрерывности μ, что означает, что для решения задачи отсутствует «логарифмический эффект».
-
Обратная задача для системы вязкоупругости в анизотропных средах с тетрагональной формой модуля упругости, с. 581-600Для приведенной канонической системы интегро-дифференциальных уравнений вязкоупругости рассмотрены прямая и обратная задачи определения поля скоростей упругих волн и матрицы релаксации. Задачи заменены замкнутой системой интегральных уравнений типа Вольтерра второго рода относительно преобразования Фурье по переменным $x_{1}$ и $x_{2}$ для решения прямой и обратной задачи. Далее к этой системе применяется метод сжимающих отображений в пространстве непрерывных функций с весовой нормой. В работе доказаны теоремы о глобальные существования и единственности решений задач.
-
Задача Дирихле для голоморфных функций в пространствах, описываемых поведением модуля непрерывности, с. 58-65Изучается и решается задача Дирихле для голоморфных функций в пространствах, описываемых поведением модуля непрерывности, удовлетворяющего заданными условиями.
-
Решается задача Дирихле для голоморфных функций в пространствах с заданным модулем непрерывности: доказывается существование голоморфной в круге функции по предельным значениям ее действительной части на границе круге.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.