Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'нелокальный потенциал':
Найдено статей: 2
  1. В работе рассматривается трехмерный оператор Шрёдингера для кристаллической пленки с нелокальным потенциалом, представляющим собой сумму оператора умножения на функцию и оператора ранга два («сепарабельного потенциала»), вида $V=W(x)+\lambda _1(\cdot ,\phi _1)\phi _1+\lambda _2(\cdot ,\phi _2)\phi _2$. Здесь функция $W(x)$ экспоненциально убывает по переменной $x_3$, функции $\phi _1(x)$, $\phi _2(x)$ линейно независимы, блоховские по переменным $x_1, \, x_2$ и экспоненциально убывающие по переменной $x_3$. Потенциалы данного рода возникают в теории псевдопотенциала. Под уровнем оператора Шрёдингера понимается его собственное значение или резонанс. Доказаны существование и единственность уровня данного оператора вблизи нуля, получена его асимптотика.

  2. Рассматривается дискретный оператор Шредингера на графе, являющийся гамильтонианом электрона, в приближении сильной связи в системе, состоящей из квантовой проволоки и двух внедренных квантовых точек. Данный оператор описывает двухбарьерную резонансную наноструктуру, причем один из барьеров представляет собой нелокальный потенциал. Описан существенный и абсолютно непрерывный спектр оператора. Изучается задача рассеяния в стационарной постановке для двух возможных направлений распространения частицы. Найдены условия полного отражения и полного прохождения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref