Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'неточность':
Найдено статей: 4
  1. В статье рассматривается задача устойчивой реконструкции неизвестного входа системы по результатам неточных измерений ее решения. Суть задачи состоит в следующем. Имеется система, описываемая распределенным уравнением второго порядка, решение которой зависит от входа, меняющегося со временем. Как вход, так и решение заранее не известны. В дискретные моменты времени измеряется решение уравнения. Результаты измерения неточны. Требуется построить алгоритм приближенного восстановления входа, обладающий свойствами динамичности и устойчивости. Свойство динамичности означает, что текущие значения приближений входа вычисляются в реальном времени (он-лайн). Свойство устойчивости — что приближения являются достаточно точными, при хорошей точности измерений. Задача относится к классу обратных задач. Представленный в статье алгоритм основан на конструкциях теории устойчивого динамического обращения в комбинации с методами некорректных задач и позиционного управления.

  2. Предлагается алгоритм решения задачи устойчивого восстановления неизвестного управления в динамической системе по неточным измерениям текущей фазовой траектории системы.

  3. Бурлаков А.А., Жуковский Е.С.
    О корректности управляемых систем с запаздыванием, с. 27-29

    Получены условия непрерывной зависимости решений дифференциальных уравнений от функций управления и запаздывания. При выполнении этих условий можно гарантировать, что неточности в определении параметров не могут оказать большого влияния на управляемую систему.

  4. Рассматривается задача стабилизации около нуля в условиях воздействия помехи и неточных данных в терминах дифференциальной игры преследования. Динамика описывается нелинейной автономной системой дифференциальных уравнений. Множество значений управлений преследователя является конечным, убегающего (помехи) — компакт. Целью управления, то есть целью преследователя, является приведение, в рамках конечного времени, траектории в любую наперед заданную окрестность некоторого шара с центром в нуле и ненулевым радиусом вне зависимости от действий помехи. Управление преследователя определяется в дискретные моменты времени на основании момента разбиения и значения из фазового пространства, которое равно сумме фазовых координат в момент разбиения и значения некоторой вспомогательной функции. Значение вспомогательной функции ограничено по норме наперед заданной величиной, которая считается известной преследователю. В работе получены условия соотношения параметров задачи и числа, которое ограничивает норму вспомогательной функции, позволяющие осуществить поимку в указанном смысле. Выигрышное управление строится конструктивно и использует фиксированный шаг разбиения временного интервала. Кроме того, получена оценка времени поимки.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref