Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассмотрена математическая модель дозвуковых нестационарных турбулентных течений несжимаемого газа, основанная на методе крупных вихрей. Приводятся описания модели подсеточной турбулентности и вычислительного алгоритма, представлены результаты параметрических расчетов турбулентных течений несжимаемого газа в прямоугольном канале при различных числах Рейнольдса.
-
Динамика пары точечных вихрей и профиля с параметрическим возбуждением в идеальной жидкости, с. 618-627В данной работе получены уравнения движения пары вихрей и кругового профиля с параметрическим возбуждением, которое возникает за счет периодического движения материальной точки. Подобные плоские задачи, с одной стороны, носят модельный характер и не могут быть использованы для точного количественного описания реальных траекторий системы. С другой стороны, во многих случаях такие модели позволяют получить достаточно точную качественную картину динамики и, вследствие простоты, данные 2D модели позволяют оценить влияние различных параметров. Описаны относительные положения равновесия, обобщающие решения Феппля и коллинеарные конфигурации, в отсутствии движения материальной точки. Показано, что в окрестности относительных равновесий в случае периодического движения центра масс профиля образуется стохастический слой.
-
Рассмотрена адаптация уравнений Навье-Стокса к универсальной многосеточной технологии с целью создания высокоэффективного алгоритма для решения задач вычислительной гидродинамики.
-
В статье выполнен теоретический анализ основополагающих уравнений, выражающих фундаментальные законы сохранения в континуальном и дисконтинуальных приближениях, и методов решения задач гидродинамики как одного из важнейших подразделов механики сплошных сред. Данная работа является попыткой более точно описать физико-химические макропроцессы. Показано, что для компьютерного моделирования больше всего подходят уравнения, которые выражают законы сохранения при естественных ограничениях на минимальные пространственный и временной масштабы, то есть уравнения без частных производных и ограничений на гладкость решений. На примере уравнений неразрывности и теплопроводности, приведен феноменологический способ построения и численного решения основополагающих уравнений, и сравнение с традиционным подходом.
-
Представлены результаты исследования возможности применения RANS моделей турбулентности для описания структуры потока в измерительном трубопроводе со стандартной диафрагмой и расчета коэффициента расхода с точностью, регламентированной стандартом. Показано влияние параметров сетки на точность расчета и сформированы рекомендации по сгущению сетки в пристеночных областях. Представлены зависимости протяженности отрывных зон от числа Рейнольдса. Установлены диапазоны по числу Рейнольдса применимости различных RANS моделей турбулентности для определения коэффициента расхода с погрешностью, удовлетворяющей требованиям стандарта.
-
Рассматриваются методы моделирования взаимодействия потока несжимаемой жидкости и преграды в рамках эйлерова (метод объема жидкости в ячейке, Volume of Fluid - VOF) и лагранжева (метод гидродинамики сглаженных частиц, Smoothed Particle Hydrodynamics - SPH) описаний. На примере решения задач о движении потока жидкости, вызванного распадом начального уровня жидкости (задача о разрушении плотины), оцениваются преимущества и недостатки применения метода SPH для моделирования гидродинамических нагрузок на преграду, развитой свободной поверхности и каплеобразования. Определяется влияние способа конкретной численной реализации граничных условий Дирихле на твердых стенках на величину давления и характер ее изменения во времени. Численные результаты, полученные с использованием методов VOF и SPH, сопоставляются с известными экспериментальными данными.
-
Проведено математическое моделирование процессов теплопереноса внутри замкнутой квадратной полости при наличии локального источника энергии полуцилиндрической формы. Проанализировано влияние расположения нагревателя на особенности эволюции гидродинамики. Рассматриваемая область представляла собой замкнутый квадратный контур, на нижней стенке которого располагался источник объемного тепловыделения, боковые стенки контура - изотермические. Представленная краевая задача была решена в безразмерных преобразованных переменных «функция тока-завихренность-температура» на основе метода конечных разностей. Проведены оценка влияния чисел Рэлея в диапазоне $10^{4}$-$10^{5}$, а также положения локального источника энергии на теплообмен внутри полости.
-
О численном моделировании трехмерной конвекции, с. 118-132Рассмотрена задача о трехмерной конвекции жидкости в прямоугольном параллелепипеде со свободными от касательных напряжений изотермическими горизонтальными границами, при подогреве снизу. Предложен специальный спектрально-разностный численный метод расчета, второго порядка аппроксимации по пространству и первого по времени. Проведенный линейный анализ предлагаемого численного метода показал, что численный метод правильно (с хорошим количественным соответствием в длинноволновой части спектра и с качественным - в коротковолновой) передает спектральные характеристики дифференциальной задачи при реальных значениях шагов по времени, пространству и надкритичности. В качестве тестов проведены расчеты двумерной валиковой и турбулентной конвекции Рэлея-Бенара для надкритичности, равной, соответственно, 2.2 и 950 при числе Прандтля, равном 10.
-
Использование схемы WENO для моделирования турбулентного течения в канале с обратным уступом, с. 460-469Представлена методика моделирования турбулентного течения вязкого газа, основанная на схеме высокого порядка аппроксимации WENO (взвешенная существенно неосциллирующая схема). Данная схема характеризуется значительной устойчивостью при выполнении расчетов, так как WENO позволяет устранять нефизичные осцилляции численного решения, которые могут возникнуть в ходе вычислений. Приведена система определяющих уравнений, описывающая поток вязкого газа, основанная на системе уравнений Навье-Стокса. Разработаны и реализованы алгоритмы 3-го и 5-го порядков точности. Приведено описание численных методик использованных в расчетах потока газа. Моделирование турбулентности производилось с применением метода крупных вихрей. Предложенные алгоритмы были использованы для исследования течения вязкого газа в канале с обратным уступом. Число Рейнольдса потока газа в канале составляло Re=15000. Проведено сравнение результатов численного моделирования с экспериментальными данными.
-
Метод дискретных вихрей в статистической вихревой динамике как парадигма компьютерных методов анализа, с. 146-155Данная работа посвящена исследованию динамики следующих систем большого числа точечных вихрей на плоскости:
- вихревые кольца с внешним радиусом r=1 и переменным внутренним радиусом r0,
- вихревые эллипсы с полуосями a, b.
Основное внимание уделено изучению асимптотического поведения (t→∞) систем и проверке критериев устойчивости для непрерывных распределений завихренности с помощью компьютерного эксперимента.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.