Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'позиционные дифференциальные игры':
Найдено статей: 12
  1. Рассматривается дифференциальная игра группы преследователей и одного убегающего при равных динамических возможностях всех участников. Получены достаточные условия уклонения от встречи в классе позиционных контрстратегий.

  2. Рассматривается задача позиционной поимки группой преследователей одного убегающего при равенстве динамических и инерционных возможностей всех участников. Получены достаточные условия ε-поимки на конечном отрезке времени.

  3. Естественным обобщением дифференциальных игр двух лиц являются конфликтно управляемые процессы с участием группы управляемых объектов (хотя бы с одной из противоборствующих сторон). При этом наибольшую трудность для исследований представляют задачи конфликтного взаимодействия между двумя группами управляемых объектов. Специфика этих задач требует создания новых методов их исследования. В данной работе рассматривается нелинейная задача группового преследования группы жестко скоординированных (то есть использующих одинаковое управление) убегающих при условии, что маневренность убегающих выше. Цель убегающих - обеспечить мягкое убегание всей группы. Под мягким убеганием понимается несовпадение геометрических координат, ускорений и так далее для убегающего и всех преследователей. Для любых начальных позиций участников построено позиционное управление, обеспечивающее мягкое убегание от группы преследователей всех убегающих.

  4. Для динамической системы, управляемой в условиях помех, рассматривается задача оптимизации гарантированного результата. Особенностью задачи является наличие функциональных ограничений на помехи, при которых свойство замкнутости множества допустимых помех относительно операции «склейки» двух его элементов, вообще говоря, отсутствует. Это обстоятельство препятствует непосредственному применению методов теории дифференциальных игр для исследования задачи и тем самым приводит к необходимости их походящей модификации. В работе предложено новое понятие неупреждающей стратегии управления (квазистратегии). Доказано, что соответствующий функционал оптимального гарантированного результата удовлетворяет принципу динамического программирования. Как следствие, установлены так называемые свойства $u$- и $v$-стабильности этого функционала, которые в дальнейшем позволят построить конструктивное решение задачи в позиционных стратегиях.

  5. Теория управления - активно развивающийся в настоящее время раздел современной математики. Класс задач, изучаемый в рамках этой теории, достаточно обширен и включает как вопросы, связанные с существованием решений, так и вопросы, связанные с эффективными способами построения управляющих воздействий. Один из подходов к решению задач управления при неполной информации был предложен в основополагающей статье Ю.С. Осипова, опубликованной в журнале «Успехи математических наук» в 2006 году. В дальнейшем этот подход, названный методом пакетов программ, получил развитие, в частности, в статьях, цитированных в настоящей работе. Указанный подход основан на подходящей модификации известного в теории позиционных дифференциальных игр метода неупреждающих стратегий (квазистратегий) для решения задач управления при неизвестном начальном состоянии. Как известно, квазистратегии, отражающие свойства вольтерровости программных реализаций управлений с обратной связью на соответствующие программные возмущения, ориентированы на исследование задач с известным начальным состоянием при наличии неизвестных динамических возмущений. В стандартных задачах управления с неполной информацией динамические возмущения, как правило, отсутствуют, а неполнота информации обусловлена дефицитом информации о начальном состоянии системы. Аналогом свойств неупреждаемости для задач с неизвестными начальными состояниями и стали пакеты программ. Следует отметить, что во всех предыдущих исследованиях, связанных с методом пакетов программ, рассматривались задачи наведения на одно-единственное целевое множество. В настоящей работе для линейной стационарной управляемой динамической системы рассмотрена задача гарантированного наведения на семейство целевых множеств в случае неполной информации о начальном состоянии. Установлен критерий разрешимости этой задачи, основанный на методе пакетов программ, и приведен иллюстрирующий пример.

  6. Метод малого параметра Пуанкаре активно применяется в небесной механике, а также в теории дифференциальных уравнений и в ее важном разделе — оптимальном управлении. В предлагаемой статье данный метод используется для построения явного вида равновесия по Нэшу и Бержу в дифференциальной позиционной игре с малым влиянием одного из игроков на скорость изменения фазового вектора.

  7. Предлагается численный алгоритм построения аппроксимации множества решений Нэша в линейной неантагонистической позиционной дифференциальной игре двух лиц с терминальными цилиндрическими показателями качества и геометрическими ограничениями на управления игроков.

  8. Для конфликтно-управляемой динамической системы, описываемой функционально-дифференциальным уравнением нейтрального типа в форме Дж. Хейла, рассматривается дифференциальная игра с показателем качества, который оценивает историю движения, реализующуюся к терминальному моменту времени, а также включает интегральную оценку реализаций управлений игроков. Игра формализуется в классе чистых позиционных стратегий. На основе понятия коинвариантных производных для функционала цены этой игры выписывается функциональное уравнение Гамильтона-Якоби. Доказывается, во-первых, что решение этого уравнения, удовлетворяющее определенным условиям гладкости, является ценой исходной дифференциальной игры, а во-вторых, что цена в точках дифференцируемости удовлетворяет выписанному уравнению Гамильтона-Якоби. Таким образом, это уравнение можно трактовать как уравнение Гамильтона-Якоби-Айзекса-Беллмана для систем нейтрального типа.

  9. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)} z_i = a_i z_i + u_i - v,\quad u_i, v \in V,$$ где $D^{(\alpha)}f$ — производная по Капуто порядка $\alpha\in(0,1)$ функции $f$. Множество $V$ допустимых управлений — выпуклый компакт, $a_i$ — неположительные вещественные числа. Целью группы преследователей является поимка убегающего. Терминальные множества — начало координат. Получены достаточные условия поимки одного убегающего в классе квазистратегий. Вводится вспомогательная игра, при помощи которой получены достаточные условия поимки убегающего в классе позиционных стратегий с поводырем.

  10. Рассматривается задача управления при наличии динамических помех. Приводится пример управляемой системы и позиционной стратегии, для которых пучок конструктивных идеальных движений, формирующий гарантированный результат, существенно изменяется при сужении множества допустимых помех до программных помех.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref