Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'полиномиальный алгоритм':
Найдено статей: 4
  1. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

  2. В статье рассмотрены методы для обнаружения особых точек на аффинной гиперповерхности или подтверждения гладкости этой гиперповерхности. Наш подход основан на построении касательных прямых к данной гиперповерхности. Существование хотя бы одной особой точки накладывает ограничение на алгебраическое уравнение, определяющее совокупность касательных прямых, проходящих через выделенную точку в пространстве. Это уравнение основано на формуле для дискриминанта многочлена от одной переменной. Для произвольно фиксированной степени гиперповерхности нами предложен детерминированный алгоритм полиномиального времени для вычисления базиса в подпространстве соответствующих многочленов. Если линейная комбинация таких многочленов не обращается в нуль на гиперповерхности, то гиперповерхность гладкая. Мы формулируем достаточное условие гладкости, проверяемое за полиномиальное время. Для некоторых гладких аффинных гиперповерхностей это условие выполнено. Этот набор включает графики кубических многочленов от нескольких переменных, а также другие примеры кубических гиперповерхностей. С другой стороны, это условие не выполняется для некоторых кубических гиперповерхностей высокой размерности. Это не мешает применению метода в низких размерностях. Также поиск особых точек важен для решения некоторых задач машинного зрения, в том числе для обнаружения угла у препятствия по последовательности кадров с одной камеры на движущемся транспортном средстве.

  3. В работе рассматривается проблематика снижения сложности $NP$-трудных задач с помощью использования близких задач, для которых оптимальное или приемлемое решение уже известно. Для задач многоагентной маршрутизации применяется методика, основанная на кластеризации сети, согласованной с маршрутами коммивояжера на каждом кластере и построения маршрутов, учитывающих ограничение временных окон доставки. Приводится математическая модель, которой соответствует блок псевдобулевой условной оптимизации с ограничениями в виде дизъюнктивных нормальных форм, допускающей полиномиальную разрешимость и блок временных ограничений. Результаты по выбору метаэвристик на основе близких задач используются в программе по доставке товаров многими агентами потребителям, расположенным в вершинах инфраструктурной дорожной сети региона.

  4. Рассматривается задача управления трёхмерной синхронной переключательной схемой с вертикально-горизонтально-фронтальной синхронизацией и однотипными круговыми переключателями. Даны условия разрешимости задачи в терминах порядка схемы и количества позиций круговых переключателей. Приводится явный вид решения в случае разрешимости задачи.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref