Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'предельная теорема':
Найдено статей: 7
  1. Исследуются свойства правильных функций, а также ограниченных функций, имеющих не более чем счетное множество точек разрыва (названных $\sigma$-непрерывными). Доказана теорема об интегрируемости по Риману-Стилтьесу $\sigma$-непрерывных функций по непрерывным функциям ограниченной вариации, а также предельная теорема Хелли для таких интегрируемых и интегрирующих функций. Процесс интегрирования по Риману-Стилтьесу расширяется на случай интегрирования $\sigma$-непрерывных функций по произвольным функциям ограниченной вариации: вводится $(*)$-интеграл как сумма классического интеграла Римана-Стилтьеса по непрерывной части функции ограниченной вариации и суммы произведений значений интегрируемой функции на скачки интегрирующей. Таким образом, $(*)$-интеграл позволяет интегрировать разрывные функции по разрывным. Все свойства $(*)$-интеграла выводятся непосредственно из этого определения. Так, для $(*)$-интеграла доказывается формула интегрирования по частям, теорема о перемене порядка интегрирования, а также все необходимые для дальнейшегоприменения предельные теоремы, в том числе предельная теорема типа теоремы Хелли.

  2. Пусть $T_{\rho}$ — иррациональный поворот на единичной окружности $S^{1}\simeq [0,1)$. Рассмотрим последовательность $\{\mathcal{P}_{n}\}$ возрастающих разбиений на $S^{1}$. Определим время попадания $N_{n}(\mathcal{P}_n;x,y):= \inf \{ j\geq 1\mid T^{j}_{\rho}(y) \in P_{n}(x)\}$, где $P_{n}(x)$ — элемент разбиения $\mathcal{P}_{n}$, содержащий точку $x$. Д. Ким и Б. Сео [9] доказали, что время попадания $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ почти всюду (по мере Лебега) сходится к $\log2$, где последовательность разбиений $\{\mathcal{Q}_n\}$ порождена хаотическим отображением $f_{2}(x):=2x \bmod 1$. Хорошо известно, что отображение $f_{2}$ имеет положительную энтропию $\log2$. Возникает естественный вопрос о том, что если последовательность разбиений $\{\mathcal{P}_n\}$ порождена отображением с нулевой энтропией. В настоящей работе мы изучаем поведение $K_n(\tau_n;x,y)$ с последовательностью смешанных разбиений ${\tau_{n}}$ таких, что $\mathcal{Q}_{n}\cap [0,\frac{1}{2}]$ порождена отображением $f_{2}$, а $ \mathcal{D}_{n}\cap [\frac{1}{2},1]$ порождена иррациональным поворотом $T_{\rho}$. Доказано, что $K_n(\tau_n;x,y)$ почти всюду (по мере Лебега) сходится к кусочно-постоянной функции с двумя значениями. Также показано, что существуют некоторые иррациональные повороты, демонстрирующие различное поведение.

  3. Атамуратов А.А., Расулов К.К.
    О теореме Шимоды, с. 17-31

    Настоящая работа посвящена теореме Шимоды о голоморфности функции $f(z,w)$, которая является голоморфной по $w\in V$ при фиксированном $z\in U$ и голоморфна по $z\in U$ при фиксированном $w\in E$, где $E\subset V$ - счетное множество, по крайней мере, с одной предельной точкой в $V$. Шимода доказывает, что в этом случае $f(z,w)$ голоморфно в $U\times V$, за исключением нигде не плотного замкнутого подмножества $U\times V.$ Рассматривается обратная задача и доказывается, что для любого заранее заданного нигде не плотного замкнутого подмножества $S\subset U$ существует голоморфная функция, удовлетворяющая теореме Шимоды на $U\times V\subset {\mathbb C}^{2}$, не голоморфная на $S\times V$. Кроме того, исследованы дополнительные условия, которые влекут за собой пустые множества особенностей в теореме Шимоды. Доказывается обобщение в случае, когда функция имеет переменный радиус голоморфности по одному из направлений.

  4. Настоящая работа посвящена исследованию асимптотических свойств числа серий в последовательности дискретных случайных величин, управляемых цепью Маркова с конечным числом состояний. Состояние цепи на каждом шаге определяет закон распределения знаков в управляемой последовательности на этом шаге. Такая случайная последовательность представляет собой модель скрытой марковской цепи. При помощи метода Чена-Стена получена оценка расстояния по вариации между распределением числа серий длины не меньше заданной в случайной последовательности, управляемой цепью Маркова, и сопровождающим распределением Пуассона. Для ее вывода сначала рассматривалась последовательность из независимых неоднородных полиномиальных случайных величин, а затем использован прием, позволяющий получить оценку расстояния по вариации между смешанным пуассоновским распределением и пуассоновским распределением с параметром, равным среднему числу серий длины не меньше заданной. Эта оценка строится на основе дисперсии параметра смешанного пуассоновского распределения и выведенной ранее оценки для расстояния по вариации для полиномиальной схемы. Отдельно рассмотрен случай стационарной цепи Маркова. При помощи полученных оценок доказаны пуассоновская и нормальная предельные теоремы для числа серий длины не меньше заданной, а также найдено предельное распределение для наибольшей длины серии в управляемой случайной последовательности.

  5. Давлетов Д.Б., Давлетов О.Б., Давлетова Р.Р., Ершов А.А.
    О собственных элементах двумерной краевой задачи типа Стеклова для оператора Ламэ, с. 54-65

    В настоящей работе исследуется двумерная краевая задача типа Стеклова для оператора Ламэ в полуполосе, которая является предельной для сингулярно возмущенной краевой задачи в полуполосе с малым отверстием. Доказана теорема о существовании собственных элементов исследуемой краевой задачи. В частности, получены оценки для собственных значений, выраженные через постоянные Ламэ и параметр, определяющий ширину полуполосы, а также уточнена структура соответствующих собственных вектор-функций, определяющая их поведение при удалении от основания полуполосы. Более того, найдены явные выражения собственных значений предельной краевой задачи с точностью до решения системы алгебраических уравнений. Результаты, полученные в данной работе, позволят построить и строго обосновать асимптотическое разложение собственного значения сингулярно возмущенной краевой задачи в полуполосе с малым отверстием с точностью до степени малого параметра, характеризующего размер отверстия.

  6. Продолжаются исследования автора по теории правильных функций и *-интеграла. Изучается возможность представления правильной функции в виде суммы непрерывной справа и непрерывной слева функций ($rl$-представимости). Доказывается предельная теорема для *-интеграла, позволяющая приближать разрывные интегрируемую и интегрирующую функции последовательностями абсолютно непрерывных функций. Доказана новая теорема о $\delta$-корректности решения обыкновенного линейного дифференциального уравнения с обобщенными функциями в коэффициентах, определяемого с помощью квазидифференциального уравнения. Получена формула для вычисления полной вариации неопределенного *-интеграла от $\sigma$-непрерывной функции по функции ограниченной вариации, обобщающая известную формулу для полной вариации абсолютно непрерывной функции. Формула интересна и в случае неопределенного $RS$-интеграла.

  7. Работа посвящена исследованию процессов распределения ресурсов в динамических ресурсных сетях, т.е. сетях, пропускные способности дуг которых зависят от времени. Распределение ресурса в сети происходит в дискретном времени, при этом ресурс каждой вершины распределяется только между смежными с ней вершинами по некоторым правилам. Проведено исследование процессов перераспределения ресурса в таких сетях. Основной задачей является разработка методов нахождения предельного состояния (распределения) ресурса в динамической ресурсной сети. Показано, что подход, основанный на построении вспомогательной сети, применим для сведения задачи о распределении ресурса в динамической сети к аналогичной задаче для вспомогательной сети. Для сильно регулярных периодических динамических сетей доказаны теоремы о существовании предельного состояния на вспомогательном графе. Для его нахождения можно использовать подходы, разработанные для решения задачи о кратчайшем пути в динамических сетях.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref