Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Бифуркационное исследование перехода к хаосу в колебательной системе движения пластинки в жидкости, с. 3-18Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.
-
Бифуркации в системе Рэлея с диффузией, с. 499-514Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.
-
Изучается задача о воздействии двухчастотных квазипериодических возмущений на системы, близкие к произвольным нелинейным двумерным гамильтоновым в случае, когда соответствующие возмущенные автономные системы имеют двойной предельный цикл. Ее решение имеет важное значение как для теории синхронизации колебаний, так и для теории бифуркаций динамических систем. В случае соизмеримости собственной частоты невозмущенной системы с частотами квазипериодического возмущения имеет место резонанс. Выводятся усредненные системы, позволяющие установить структуру резонансной зоны, то есть описать поведение решений в окрестностях индивидуальных резонансных уровней. Исследование этих систем позволяет установить возможные бифуркации, возникающие при отклонении резонансного уровня от уровня невозмущенной системы, порождающего двойной предельный цикл в возмущенной автономной системе. Полученные теоретические результаты применяются при исследовании двухчастотного квазипериодически возмущенного уравнения маятникового типа и иллюстрируются при помощи численных вычислений.
-
Динамика оптимального поведения двухвидового сообщества с учетом внутривидовой конкуренции и миграции, с. 518-531Рассматриваются некоторые задачи теории оптимального фуражирования, а именно, задачи выбора популяцией хищника участка, пригодного для питания, и нахождения условий ухода из него. Динамика взаимодействия хищника и жертвы задается системой Лотки-Вольтерры, в которой учтена внутривидовая конкуренция особей жертвы и возможность миграции особей хищника и жертвы. В процессах взаимодействия и миграции участвуют некоторые доли популяций. Решается задача нахождения оптимальных с точки зрения равновесия по Нэшу долей. При этом получено разбиение фазового пространства системы на области с различным поведением популяций. Исследуются оптимальные траектории соответствующей динамической системы с переменной структурой, их поведение на границах разбиения фазового пространства. Найдены положения равновесия и доказана их глобальная устойчивость при определенных ограничениях на параметры системы. В одном из случаев взаимоотношения между параметрами исследование качественного поведения оптимальных траекторий приводит к задаче о существовании предельных циклов. При этом дана оценка соответствующей области притяжения равновесия.
-
В работе исследуется стохастическая динамика двумерной модели Хиндмарш-Розе. В детерминированной модели Хиндмарш-Розе возможны параметрические зоны сосуществования различных устойчивых аттракторов - равновесий и предельных циклов. Появление колебаний больших амплитуд при воздействии случайных возмущений на систему в этих зонах объясняется наличием предельного цикла. Однако стохастическая генерация осцилляций больших амплитуд возможна и в параметрической зоне, где имеется лишь одно устойчивое равновесие. В данной статье рассматривается этот случай. При малых шумах случайные состояния концентрируются вблизи устойчивого равновесия. При увеличении интенсивности шума траектории уходят далеко от равновесия, совершая колебательные движения больших амплитуд в окрестности неустойчивого равновесия. Это явление подтверждается изменением плотности распределения случайных траекторий. Проводится анализ этого эффекта с помощью техники функций стохастической чувствительности. Предлагается метод оценки критических значений интенсивности шума.
-
О предельных циклах, резонансных и гомоклинических структурах в асимметричном уравнении маятникового типа, с. 228-244Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового типа, близкого к интегрируемому стандартному уравнению математического маятника. Для автономного уравнения решается проблема предельных циклов, которая сводится к исследованию порождающих функций Пуанкаре-Понтрягина. Строится разбиение плоскости параметров на области с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивидуальных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналитического метода Мельникова и численного моделирования изучаются основные бифуркации неавтономного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожденного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими бифуркационными границами.
-
Рассмотрена модель, описывающая движение водного робота с корпусом в форме симметричного крылового профиля NACA0040. Управление движением осуществляется с помощью периодических колебаний ротора. Численно показано, что при физически допустимых значениях параметров управления в фазовом пространстве системы существует только один предельный цикл. Предельный цикл, возникающий при симметричном управлении, соответствует в среднем направленному продвижению робота. В случае несимметричных управлений реализуется движение вблизи окружности. Предложен алгоритм управления курсом движения робота, использующий обнаруженные предельные циклы и переходные процессы между ними.
-
Рассматривается проблема эффективной вычислимости разрешимых моделей классификации конечных объектов. Исследуется конструктивизация условий симультанности (предельно короткого цикла) принятия решения в классификации. Симультанность ("однотактность") достигается параллельным сравнением компонент неизвестной реализации с информативными элементами всех эталонов в обучающей выборке. Конструктивизация условий симультанности предусматривает: выделение информативных элементов (идентификационных меток) в информативных зонах классифицируемых множеств; параллельное покомпонентное сравнение неизвестной реализации конечного объекта с информативными элементами всех эталонов из обучающей выборки. Полученные результаты симультанной схемы принятия решений в классификации интерпретируются в нейронных сетях, в обобщенной модели распознавания, в задачах идентификации.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.