Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О классификации особенностей, эквивариантно простых относительно представлений циклических групп, с. 155-159Рассматривается задача классификации ростков функций $(\mathbb{C}^n, 0)\to(\mathbb{C}, 0)$, эквивариантно простых относительно различных представлений конечной циклической группы $\mathbb{Z}_m$, $m\geqslant 3$, на пространствах $\mathbb{C}^n$ и $\mathbb{C}$, с точностью до эквивариантных автоморфизмов $\mathbb{C}^n$. В случае согласованных скалярных действий группы доказано, что при $n\geqslant 2$ эквивариантно простых ростков не существует. Этот результат обобщается на случаи, когда действие группы по нескольким переменным в $\mathbb{C}^n$ совпадает с действием группы в $\mathbb{C}$. Кроме того, доказано, что в случае несогласованных скалярных действий группы $\mathbb{Z}_3$ на $\mathbb{C}^2$ и $\mathbb{C}$ всякий эквивариантно простой росток эквивалентен одному из ростков $A_{3k+1}$, $k\in\mathbb{Z}_{\geqslant 0}$.
-
В работе описывается классификация локально конформного почти косимплектического многообразия ($\mathcal{LCAC_{S}}$-многообразия) в соответствии с тензором конгармонической кривизны. В частности, были получены необходимые условия $\Phi$ инвариантности тензора конгармонической кривизны на $\mathcal{LCAC_{S}}$-многообразии классов $CT_{i}$, $i = 1,2,3$. Кроме того, доказано, что любое $\mathcal{LCAC_{S}}$-многообразие класса $CT_{1}$ оказывается конгармоничным и $\Phi$-параконтактным.
-
В задаче о движении волчка Ковалевской в двойном поле (случай интегрируемости А.Г. Реймана-М.А. Семенова-Тян-Шанского) вычислен тип всех критических точек отображения момента.
-
В работе рассматривается пространство Стоуна булевой алгебры подмножеств одного счетного частично упорядоченного множества. Главной особенностью этого множества является наличие бесконечного числа непосредственных последователей у каждого его элемента. Отсюда следует, что каждый фиксированный ультрафильтр данного пространства Стоуна является неизолированной точкой, а подмножество свободных ультрафильтров всюду плотно. В работе дана классификация точек пространства, доказано, что есть свободные ультрафильтры, которые не являются пределами последовательностей фиксированных ультрафильтров, а также свободные ультрафильтры, определяемые цепями частично упорядоченного множества. Рассмотрены кардинальные инварианты подпространства свободных ультрафильтров. Доказано, что это подпространство имеет счетное число Суслина, но не сепарабельно.
-
В данной работе предлагается новый метод классификации метрических функций феноменологически симметричных геометрий двух множеств. Он называется методом вложения, суть которого состоит в нахождении метрических функций феноменологически симметричных геометрий двух множеств высокого ранга по известной феноменологически симметричной геометрии двух множеств ранга на единицу ниже. Так по ранее известной метрической функции феноменологически симметричной геометрии двух множеств ранга $(2,2)$ находится метрическая функция феноменологически симметричной геометрии двух множеств ранга $(3,2)$, по феноменологически симметричной геометрии двух множеств ранга $(3,2)$ находится феноменологически симметричной геометрии двух множеств ранга $(4,2)$. Затем доказывается, что вложение феноменологически симметричной геометрии двух множеств $(4,2)$ в феноменологически симметричной геометрии двух множеств ранга $(5,2)$ отсутствует. Для решения поставленной задачи составляются специальные функциональные уравнения, которые сводятся к хорошо известным дифференциальным уравнениям.
-
В статье приводится аналитическая классификация особенностей ранга 0 и 1 отображения момента для интегрируемого случая Ковалевской-Яхья в динамике твердого тела.
-
Представлена полная аналитическая классификация атомов гиростата Ковалевской–Яхья, возникающих в критических точках ранга 1. Найдены все разделяющие значения гиростатического момента при классификации диаграмм Смейла–Фоменко. Разработан "конструктор" графов Фоменко, применение которого дало полное описание грубой топологии этого интегрируемого случая. Доказано, что имеется девять групп эквивалентных молекул (без меток), содержащих 22 устойчивых графа и 6 неустойчивых по отношению к количеству критических окружностей на критических уровнях.
-
В данной работе методом вложения строится классификация феноменологически симметричных геометрий двух множеств ранга $(n+1,m)$ при $n\geqslant2$ и $m\geqslant 3$. Суть этого метода состоит в нахождении метрических функций феноменологически симметричных геометрий двух множеств высокого ранга по известной феноменологически симметричной геометрии двух множеств ранга на единицу ниже. Так, по метрической функции феноменологически симметричной геометрии двух множеств ранга $(n+1,n)$ находится метрическая функция феноменологически симметричной геометрии двух множеств ранга $(n+1,n+1)$, по которой потом находится метрическая функция геометрии ранга $(n+1,n+2)$. Затем доказывается, что вложение феноменологически симметричной геометрии двух множеств ранга $(n+1,n+2)$ в феноменологически симметричную геометрию ранга $(n+1,n+3)$ отсутствует. С учетом симметрии метрической функции относительно первого и второго аргументов в конце работы методом математической индукции завершается классификация. Для решения поставленной задачи записываются специальные функциональные уравнения, которые сводятся к хорошо известным дифференциальным уравнениям.
-
В данной работе методом вложения строится классификация двуметрических феноменологически симметричных геометрий двух множеств (ФС ГДМ) ранга $(3,2)$ по ранее известной аддитивной двуметрической ФС ГДМ ранга $(2,2)$, задаваемой парой функций $g^1=x+\xi$ и $g^2 = y+\eta$. Суть этого метода состоит в нахождении функций, задающих ФС ГДМ ранга $(3,2)$ по функциям $g^1=x+\xi$ и $g^2 = y+\eta$. При решении этой задачи используем тот факт, что двуметрические ФС ГДМ ранга $(3,2)$ допускают группы преобразований размерности 4, а двуметрические ФС ГДМ ранга $(2,2)$ - размерности 2. Из этого следует, что компоненты операторов алгебры Ли группы преобразований двуметрической ФС ГДМ ранга $(3,2)$ являются решениями системы восьми линейных дифференциальных уравнений первого порядка от двух переменных. Исследуя эту систему уравнений, приходим к возможным выражениям для систем операторов. Затем из систем операторов выделяем операторы, образующие алгебры Ли. Потом, применяя экспоненциальное отображение, по найденным алгебрам Ли восстанавливаем действия групп Ли. Эти действия как раз и задают двуметрические ФС ГДМ ранга $(3,2)$.
-
Для современной геометрии важное значение имеет изучение геометрий максимальной подвижности. Максимальная подвижность для $n$-мерной геометрии, задаваемой функцией $f$ пары точек означает существование $n(n+1)/2$-мерной группы преобразований, оставляющей эту функцию инвариантной. Известно много геометрий максимальной подвижности (геометрия Евклида, симплектическая, Лобачевского и т.д.), но полной классификации таких геометрий нет. В данной статье методом вложения решается одна из таких классификационных задач. Суть этого метода состоит в следующем: по известной функции пары точек $g$ трехмерной геометрии находим все невырожденные функции $f$ пары точек четырехмерных геометрий, являющиеся инвариантами группы Ли преобразований размерности 10. В этой статье $g$ - это невырожденные функции пары точек двух гельмгольцевых трехмерных геометрий: $$g = 2\ln(x_i-x_j) + \dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j,$$ $$\ln[(x_i-x_j)^2+(y_i-y_j)^2]+ 2\gamma\,\text{arctg}\dfrac{y_i-y_j}{x_i-x_j}+2z_i+2z_j.$$ Данные геометрии локально максимально подвижны, то есть их группы движений шестимерны. Задача, решаемая в этой работе, сводится к решению аналитическими методами специальных функциональных уравнений, решения которых ищутся в виде рядов Тейлора. Для перебора различных вариантов применяется пакет математических программ Maple 15. В результате получаются только вырожденные функции пары точек.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.