Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'решетка множеств':
Найдено статей: 3
  1. Рассматривается периодический оператор Шредингера ĤA+V в Rn, n≥3. На векторный потенциал A накладываются ограничения, которые, в частности, выполнены, если потенциал A принадлежит классу Соболева Hqloc(Rn;Rn), 2q>n-1, а также в случае, когда Σ ||AN||Cn<+∞, где AN – коэффициенты Фурье потенциала A. Доказана абсолютная непрерывность спектра периодического оператора Шредингера ĤA+V для скалярных потенциалов V из пространства Морри L2,p(Rn), p∈((n-1)/2,n/2], для которых ||ΧBr(x)V||2,pε0 при всех достаточно малых r>0 и всех xRn, где число ε0=ε0(n,p;A)>0 зависит от векторного потенциала A, Br(x) – замкнутый шар радиуса r>0 с центром в точке xRn, ΧΚ – характеристическая функция множества KRn, ||.||2,p
    норма в пространстве L2,p(Rn). Пусть K – элементарная ячейка решетки периодов потенциалов A и V, K* – элементарная ячейка обратной решетки. Оператор ĤA+V  унитарно эквивалентен прямому интегралу операторов ĤA(k)+V, k∈2πK*, действующих в L2(K). Последние операторы рассматриваются также при комплексных векторах k+ik’∈Cn. При доказательстве абсолютной непрерывности спектра оператора ĤA+V используется метод Томаса и оценки резольвенты операторов ĤA(k+ik’)+V при определенным образом выбираемых комплексных векторах k+ik’∈Cn с достаточно большой мнимой частью k’.

  2. Рассматривается семейство максимальных сцепленных систем, элементами которых являются множества произвольной решетки с «нулем» и «единицей», а также его подсемейство, составленное из ультрафильтров данной решетки. Исследуются соотношения между естественными топологиями, используемыми для оснащения множества максимальных сцепленных систем и множества ультрафильтров упомянутой решетки множеств. Показано, что последнее множество в естественном (для пространств ультрафильтров) оснащении является подпространством пространства максимальных сцепленных систем в оснащении двумя сравнимыми топологиями, одна из которых подобна используемой при построении расширения Волмэна, а вторая соответствует на идейном уровне схеме построения пространства Стоуна в случае, когда решетка является алгеброй множеств. Свойства получающейся битопологической структуры детализированы для случаев, когда решетка является алгеброй множеств, топологией, семейством замкнутых множеств топологического пространства.

  3. Рассматривается абстрактная задача о достижимости с ограничениями асимптотического характера, для которой конструируется несеквенциальное (вообще говоря) множество притяжения, получаемое посредством сопоставления решению соответствующего элемента притяжения. Сами же решения определяются в виде направленностей, фильтров или ультрафильтров пространства обычных решений (каждый из упомянутых классов достаточен для построения множества притяжения). Основное внимание уделяется вопросам построения множеств притяжения в классе ультрафильтров широко понимаемых измеримых пространств (пространства с семействами, замкнутыми относительно пересечений, измеримые пространства с алгебрами множеств и т.п.). В качестве инструмента исследования используется конструкция, возникающая при рассмотрении ультрафильтров решетки множеств.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref