Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'градиент':
Найдено статей: 9
  1. Бадриев И.Б., Исмагилов И.Н., Исмагилов Л.Н.
    Метод решения нелинейных стационарных анизотропных задач фильтрации, с. 3-11

    Работа посвящена методу решения стационарных задач фильтрации несжимаемой жидкости, следующей нелинейному анизотропному многозначному закону фильтрации с предельным градиентом. Задача фильтрации сформулирована в виде вариационного неравенства второго рода с обратно сильно монотонным оператором в гильбертовом пространстве. Функционал, входящий в это вариационное неравенство, является суммой нескольких полунепрерывных снизу выпуклых собственных функционалов. Для решения вариационного неравенства предлагается использовать итерационный метод расщепления.

  2. В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.

    В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.

    С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.

    Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.

  3. Ачарджи С., Молодцов Д.А.
    Мягкий рациональный криволинейный интеграл, с. 578-596

    Теория мягких множеств — это новая область математики, которая имеет дело с неопределенностями. Приложения теории мягких множеств широко распространены в различных областях науки и социальных наук, таких как принятие решений, информатика, распознавание образов, искусственный интеллект и т.д. Важность мягких теоретико-множественных версий математического анализа ощущается в нескольких областях информатики. В этой статье предлагаются некоторые концепции мягкого градиента функции и мягкого интеграла, аналога криволинейного интеграла в классическом анализе. Установлены основные свойства мягких градиентов. Найдено необходимое и достаточное условие, при котором множество может быть подмножеством мягкого градиента некоторой функции. Доказано включение мягкого градиента в мягкий интеграл. Установлены полуаддитивность и положительная однородность мягкого интеграла. Получены оценки мягкого интеграла и размера его отрезка. Полуаддитивность относительно верхнего предела интегрирования доказана. Кроме того, эта статья расширяет теоретические развитие мягкого рационального криволинейного интеграла и связанных областей для повышения функциональности с точки зрения вычислительных систем.

  4. Изучаются аппроксимирующие конечномерные задачи математического программирования, возникающие в результате кусочно-постоянной дискретизации управления (в рамках техники параметризации управления) при оптимизации распределенных систем достаточно широкого класса. Устанавливается непрерывность по Липшицу градиентов функций аппроксимирующих задач; приводятся соответствующие формулы градиентов, использующие аналитическое решение исходной управляемой системы и сопряженной к ней системы и тем самым обеспечивающие возможность алгоритмического разделения проблемы оптимизации и проблемы решения управляемой начально-краевой задачи. Применение к численному решению задач оптимизации иллюстрируется на примере задачи Коши-Дарбу, управляемой по интегральному критерию. Приводятся результаты численного решения соответствующей аппроксимирующей задачи в системе MatLab с помощью программы fmincon, а также авторской программы, реализующей метод условного градиента. Кроме того, рассматривается задача безусловной минимизации, получаемая из аппроксимирующей задачи с ограничениями методом синус-параметризации. Приводятся результаты численного решения указанной задачи в системе MatLab с помощью программы fminunc, а также авторских программ, реализующих методы наискорейшего спуска и BFGS. Результаты численных экспериментов подробно анализируются.

  5. Резольвентный метод, базирующийся на преобразованиях Лежандра, применен для интегрирования уравнений баллистики в среде со степенным по скорости сопротивлением, коэффициент которого падает линейно с высотой. Во втором приближении по градиенту плотности и с учетом уменьшения с высотой ускорения свободного падения g(y) задача сведена к линейному дифференциальному уравнению. Его решением получены универсальные формулы для неоднородностной добавки к резольвентной функции fn(b), а также к вертикальной и горизонтальной координатам δy(b), δx(b), b = tgθ - наклон траектории. Подробно рассмотрен случай квадратичного сопротивления.

  6. Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.

  7. Хорошо известно, что методы сопряженного градиента полезны при решении масштабных задач нелинейной оптимизации без ограничений. В данной работе мы рассматриваем объединение лучших свойств двух методов сопряженного градиента. В частности, мы даем новый метод сопряженного градиента, основанный на гибридизации полезных методов DY (Dai-Yuan) и HZ (Hager-Zhang). Параметры гибрида выбираются таким образом, чтобы предложенный метод удовлетворял условиям сопряженности и достаточного спуска. Показано, что новый метод сохраняет свойство глобальной сходимости двух вышеупомянутых методов. Описаны численные результаты для набора стандартных тестовых задач. Показано, что в большинстве случаев эффективность предложенного метода выше, чем у DY и HZ.

  8. Исследовано однопараметрическое семейство квадратичных интерполяционных многочленов нескольких переменных. В роли параметра выступает точка n-мерного пространства. Исследованы вопросы существования и единственности интерполяционных многочленов. Для многочленов получено явное представление (в барицентрической системе координат). Показано, что лишь для одного-единственного параметра имеет место непрерывная стыковка интерполяционных многочленов, построенных на элементах триангуляции специального вида. Для интерполяционного многочлена, соответствующего данному параметру, получено явное представление в декартовой системе координат. Применение интерполяции с данным параметром позволяет осуществлять квадратичную сплайн-аппроксимацию функций многих переменных (одновременно с аппроксимацией поля градиента этой функции).

  9. Рассматривается нестационарное движение жидкой бинарной смеси в узком протяженном горизонтальном канале с твердыми стенками, нагревающимися по определенному закону. Используется возможность применения решения Остроумова-Бириха к описанию исследуемого течения, что сводит задачу к решению смешанной краевой задачи для системы параболических уравнений. Особенностью задачи является дополнительное к граничным интегральное условие на расход жидкости, позволяющее вместе с функциями скорости, температуры и концентрации находить горизонтальный градиент давления. Посредством построенной численной процедуры решения поставленной задачи проводится анализ полученных характеристик движения при использовании в качестве смеси водного спиртового раствора. Показаны возможности стабилизации нестационарного течения и управления движением посредством периодически меняющейся тепловой нагрузки на стенке канала.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref