Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянный вектор управления таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий выражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о стабилизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыванием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.
-
В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.
В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.
С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.
Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.
-
Для блочных матричных линейных систем управления изучается свойство, обеспечивающее назначение произвольных матричных коэффициентов для характеристического матричного полинома. Это свойство является обобщением свойства назначаемости спектра собственных значений или назначаемости произвольных коэффициентов характеристического полинома, от систем с блочными матрицами со скалярными блоками $(s=1)$ на системы с блочными матрицами с блоками более высоких размерностей $(s>1)$. По сравнению со скалярным случаем $(s=1)$ в блочных случаях более высоких размерностей $(s>1)$ появляются новые особенности, отсутствующие в скалярном случае. Вводятся новые свойства, обеспечивающие назначение произвольных (верхнетреугольных, нижнетреугольных, диагональных) матричных коэффициентов для характеристического матричного полинома. В скалярном случае все описанные свойства эквивалентны друг другу, однако в блочных случаях более высоких размерностей это не так. Устанавливаются импликации между этими свойствами.
-
Решена задача о построении асимптотически устойчивых произвольно заданных программных движений уравновешенного гиростата относительно центра масс. Решение получено синтезом активного программного управления, приложенного к системе тел, и стабилизирующего управления по принципу обратной связи. Управление построено в виде точного аналитического решения в классе непрерывных функций. Задача решена на основе прямого метода Ляпунова теории устойчивости с использованием функций Ляпунова со знакопостоянными производными.
-
В работе ставится задача об одноосной и трехосной ориентации системы двух соосных тел с моментами инерции, зависящими от времени (переменной структуры). Ориентация исследуется относительно кениговой и произвольной неинерциальной систем координат. Задача решена аналитически построением активного управления, приложенного к системе тел, по принципу обратной связи, реализуемой, например, двигателями малой тяги. Получены стабилизирующие управления и условия, при которых возможна желаемая ориентация, обладающая свойством асимптотической устойчивости. Поставленная задача решалась на основе метода функций Ляпунова и метода предельных уравнений и предельных систем, позволяющих использовать функции Ляпунова со знакопостоянными производными.
-
В статье рассмотрены основные принципы постановок задач в механике твердого тела при наличии связей (с сухим трением и без). Основное внимание уделено предыстории начальных условий задачи, которая должна быть корректно определена таким образом, чтобы не требовалось введения дополнительных гипотез и допущений, выводящих исследование за рамки динамики твердого тела без ударов. Тогда динамика движения (и/или равновесия) твердых тел может быть описана однозначно и без каких-либо парадоксальных ситуаций (парадоксов Пэнлеве). Эта методика иллюстрируется на трех известных задачах механики: опирание твердого тела на одну точку при наличии сухого трения, движение стержня с ползунами в направляющих с сухим трением, опирание твердого тела на две точки с сухим трением («скамейка»).
-
Краевые задачи теории функции комплексных переменных эффективно используются при исследовании равновесия однородных упругих сред. Наиболее сложные системы краевых задач соответствуют случаю, когда упругое тело обладает анизотропными свойствами. Анизотропия среды приводит к появлению в краевых условиях функции сдвига, которая в общем случае нарушает аналитичность искомых функций. В работе проводится исследование систем краевых задач со сдвигом для аналитических векторов, соответствующих трем основным задачам теории упругости (первая, вторая и смешанная задачи). Системы аналитических векторов со сдвигом сводятся к равносильным системам из краевых задач Гильберта для аналитических функций, содержащих интегральные члены со слабой особенностью. Полученное общее решение основных краевых задач анизотропной теории упругости позволяет проверить указанные задачи на устойчивость относительно возмущений краевых условий и формы контура. Такое исследование актуально в связи с необходимостью применения приближенных численных методов к решению краевых задач со сдвигом. Основным результатом работы следует считать доказательство устойчивости систем векторных краевых задач со сдвигом для аналитических функций на пространстве Гёльдера, соответствующих основным задачам теории упругости для анизотропных тел относительно изменения краевых условий и формы контура.
-
О разрешимости некоторых краевых задач для нелокального уравнения Пуассона с периодическими условиями, с. 137-154В настоящей работе с помощью отображений типа инволюции вводится нелокальный аналог оператора Лапласа. Для соответствующего нелокального аналога уравнения Пуассона в единичном шаре изучены новые классы краевых задач. В рассматриваемых задачах граничные условия заданы в виде связи значения искомой функции в верхней полусфере со значением в нижней полусфере. Исследуемые задачи обобщают известные периодические и антипериодические краевые задачи для круговых областей. Задачи решаются сведением их к двум вспомогательным задачам с краевыми условиями Дирихле и Неймана для нелокального аналога уравнения Пуассона. Используя известные утверждения для полученных вспомогательных задач, мы доказываем теоремы о существовании и единственности решения основных задач. Найдены точные условия разрешимости исследуемых задач, а также получены интегральные представления решений. Изучены также спектральные вопросы, связанные с периодическими задачами. Найдены собственные функции и собственные значения этих задач. Доказаны теоремы о полноте системы собственных функций в пространстве $L_2$.
-
Рассматривается линейная управляемая система с векторным управлением и непрерывными коэффициентами. Для такой системы получено эффективное достаточное условие докритичности в предположении достаточной гладкости параметров системы. Для автономной управляемой системы получено необходимое условие докритичности. В работе также изучается связь докритических и вполне управляемых линейных систем. Доказано, что линейная система вполне управляема на отрезке, если она является докритической хотя бы в одной внутренней точке этого отрезка. Доказано также, что вполне управляемая автономная линейная система со скалярным управлением является докритической.
-
Рассматривается линейное однородное автономное дескрипторное уравнение с дискретным временем $$B_0g(k+1)+\sum_{i=1}^mB_ig(k+1-i)=0,\quad k=m,m+1,\ldots,$$ c прямоугольными (в общем случае) матрицами $B_i.$ Такое уравнение возникает при исследовании задач управления системами со многими соизмеримыми запаздываниями в управлении: задачи 0-управляемости, задачи синтеза регулятора типа обратной связи, обеспечивающего успокоение решения исходной системы, задачи модальной управляемости (управляемости коэффициентов характеристического квазиполинома), задачи спектральной приводимости и задачи синтеза наблюдателей для двойственной системы наблюдения. Для изучаемого дескрипторного уравнения с дискретным временем на основе решения конечной цепочки однородных алгебраических систем построено описание подпространства начальных условий, для которых это уравнение разрешимо. Получено представление всех его решений в виде, позволяющем организовать вычислительный процесс для нахождения одного из решений этого уравнения. Изучены свойства этого уравнения, используемые в задачах синтеза регуляторов для непрерывных систем со многими соизмеримыми запаздываниями в управлении. Отличительной чертой представленного исследования изучаемого объекта является использование подхода, не требующего построения преобразований, приводящих матрицы исходного уравнения к различным каноническим формам.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.