Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'слабо инвариантные и статистически слабо инвариантные множества':
Найдено статей: 3
  1. Для управляемых систем со случайными параметрами исследуются свойства статистической инвариантности и статистически слабой инвариантности, выполненные с вероятностью единица. Получены достаточные условия инвариантности заданного множества относительно управляемой системы, выраженные в терминах функций Ляпунова и динамической системы сдвигов. Доказано обобщение теоремы С.А. Чаплыгина о дифференциальных неравенствах и получены условия существования верхнего решения для задачи Коши с кусочно непрерывной по t правой частью без предположения единственности решения.

  2.  

    Исследуются условия, при которых управляемая система  = f(t, x, u), uU(t, x), вместе с замыканием множества сдвигов (относительно времени t) управляемой системы обладает свойством равномерной локальной или равномерной глобальной достижимости на заданном отрезке времени. Не предполагается, что функция (t, x) → U(t, x), задающая геометрические ограничения на допустимые управления u(t, x) ∈ U(t, x), имеет выпуклые компактные образы и не предполагается, что соответствующее управляемой системе дифференциальное включение имеет выпуклые образы.

     

  3. Получены условия, позволяющие оценивать относительную частоту пребывания множества достижимости управляемой системы в некотором заранее заданном множестве. Если относительная частота пребывания в этом множестве равна единице, то данное множество называется статистически инвариантным. Получены также условия, при которых заданное множество статистически слабо инвариантно относительно управляемой системы, то есть для каждой начальной точки из этого множества по крайней мере одно решение управляемой системы, статистически инвариантно. Предполагается, что образы правой части дифференциального включения, отвечающего данной управляемой системе, замкнуты, но не обязательно компактны. Основные утверждения формулируются в терминах функций Ляпунова, метрики Хаусдорфа–Бебутова и динамической системы сдвигов, сопутствующей правой части дифференциального включения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref