Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'собственные элементы':
Найдено статей: 6
  1. В пространстве прерывистых функций исследовано параметрическое семейство подпространств специального вида и подпространство, представляющее их пересечение. Оно содержит в себе пространство функций ограниченной вариации. Исследована решетка подпространств, зависящая от параметра. Исследованы вопросы существования интеграла Римана–Стилтьеса на элементах подпространств. Доказана полнота подпространств (в каждом подпространстве используется собственная норма). Исследованы соотношения между нормами.

  2. Целью работы является получение математической модели движения составной упругой системы. Поиск собственных форм и частот предлагается проводить путем разложения колебаний по формам неподвижных элементов. Это позволяет преобразовать уравнения движения в частных производных в обыкновенные дифференциальные уравнения. Проведено моделирование движения космического аппарата, в состав которого входят упругие элементы большой протяженности (панели солнечных батарей).

  3. Давлетов Д.Б., Давлетов О.Б., Давлетова Р.Р., Ершов А.А.
    О собственных элементах двумерной краевой задачи типа Стеклова для оператора Ламэ, с. 54-65

    В настоящей работе исследуется двумерная краевая задача типа Стеклова для оператора Ламэ в полуполосе, которая является предельной для сингулярно возмущенной краевой задачи в полуполосе с малым отверстием. Доказана теорема о существовании собственных элементов исследуемой краевой задачи. В частности, получены оценки для собственных значений, выраженные через постоянные Ламэ и параметр, определяющий ширину полуполосы, а также уточнена структура соответствующих собственных вектор-функций, определяющая их поведение при удалении от основания полуполосы. Более того, найдены явные выражения собственных значений предельной краевой задачи с точностью до решения системы алгебраических уравнений. Результаты, полученные в данной работе, позволят построить и строго обосновать асимптотическое разложение собственного значения сингулярно возмущенной краевой задачи в полуполосе с малым отверстием с точностью до степени малого параметра, характеризующего размер отверстия.

  4. Рассматривается задача идентификации условий закрепления балки по пяти собственным частотам ее колебаний. На основе условий Плюккера, возникающих при восстановлении  матрицы по ее минорам  максимального порядка, построено множество корректности задачи и доказана корректность ее по А.Н. Тихонову. Найдено явное решение задачи идентификации матрицы краевых условий, выписанное в терминах характеристического определителя соответствующей спектральной задачи. Приведены соответствующие примеры.

  5. В пространстве $R^l$, $l\geq 2$, рассматриваются преобразования типа инволюции. Исследуются свойства матриц этих преобразований. Определена структура рассматриваемой матрицы и доказано, что матрица этих преобразований определяется элементами первой строки. Доказана также симметричность исследуемой матрицы. Кроме того, в явном виде найдены собственные векторы и собственные значения рассматриваемой матрицы. Найдена также обратная матрица и доказано, что обратная матрица имеет такую же структуру, как и основная матрица. В качестве приложений рассматриваемых преобразований введены и изучены свойства нелокального аналога оператора Лапласа. Для соответствующего нелокального уравнения Пуассона в единичном шаре исследованы вопросы разрешимости краевых задач Дирихле и Неймана. Доказана теорема об однозначной разрешимости задачи Дирихле, построены явный вид функции Грина и интегральное представление решения, а также найден порядок гладкости решения задачи в классе Гёльдера. Найдены также необходимые и достаточные условия разрешимости задачи Неймана, явный вид функции Грина и интегральное представление.

  6. На примере задачи о закритическом поведении продольно сжатого стержня на границе двух винклеровских сред иллюстрируется алгоритм локального перебора вариантов, позволяющий избежать «проклятия размерности».

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref