Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматриваются постановка и тестовые решения задачи динамического взаимодействия твердых тел произвольной формы в рамках дискретно-элементного моделирования. При дискретизации используется описание тел произвольной формы, составленных из элементов-сфер, жестко связанных между собой. Агломераты строились на нескольких сетках с разной размерностью, что позволило оценить влияние параметров при построении агломератов сфер и гладкости получаемой поверхности. Представлена система уравнений движения агломерата сфер относительно глобальной системы координат, интегрирование которой выполняется на модифицированной схеме Верле. Силы взаимодействия между сферами определяются на основе контактной модели Герца-Миндлина с учетом вязкого демпфирования. Тестирование метода проводилось на задаче взаимодействия двух сфер. Вычислялись траектории движения сфер, представленные агломератом сферических частиц. Полученные результаты сравнивались со случаем движения и взаимодействия сфер в одночастичном приближении.
-
Рассмотрены трехмерные задачи узлов для простой кубической решетки и твердых сфер, находящихся в хаотическом движении. Установлены дополнительные (к двухпоказательному скейлингу) соотношения между индексами: 2-α-γ=ν (или νd-γ=ν) и β=-2α. Определены численные значения трехмерных критических индексов: α=-2/11, η=0, β=4/11, ν=8/11, γ=16/11 и δ=5.
-
Влияние эффектов Барнетта-Лондона и Эйнштейна-де Гааза на движение неголономной сферы Рауса, с. 583-598Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.
-
Исследуется нерезонансная эволюция угла наклона оси вращения гипотетической экзо-Земли в гравитационном поле звезды, спутника планеты (экзо-Луны) и внешней планеты (экзо-Юпитера). Считаем, что экзо-Земля является динамически симметричным твердым телом $(A = B)$, эллипсоид инерции которого близок к сфере. Полагаем также, что обе планеты движутся по кеплеровским эллипсам вокруг звезды. Траектория спутника — эволюционирующий эллипс с фокусом в экзо-Земле: эволюционирует долгота восходящего узла орбиты спутника на плоскости «эклиптики» и аргумент перицентра. В предположении, что частоты орбитального эллиптического движения есть величины порядка единицы, получены канонические усредненные уравнения возмущенных колебаний оси вращения экзо-Земли, содержащие параметры, медленно меняющиеся со временем. В предположении, что массы планет малы по сравнению с массой звезды, получены в первом приближении метода малого параметра упрощенные уравнения колебаний оси вращения планеты. Интеграция этих уравнений дает явную зависимость угла наклона оси вращения экзо-Земли от времени. Показано, что гравитационные моменты от внешней планеты формируют вековую, долгопериодическую моду колебаний с частотой, равной частоте невозмущенной прецессии оси собственного вращения экзо-Земли. Влияние экзо-Луны сводится к появлению короткопериодических гармоник с частотой, близкой к частоте прецессии долготы восходящего узла орбиты экзо-Луны. Проведены расчеты для двух экзопланетных систем: для системы, подобной Солнечной, и для планетной системы 7 Canis Majoris. Описан эффект дестабилизации (стабилизации) колебаний по углу нутации оси вращения экзо-Земли под действием гравитационных моментов от экзо-Луны и экзо-Юпитера.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.