Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О нескейлинге вероятности протекания простой кубической решетки: теория и компьютерный эксперимент, с. 29-36На основе известных свойств функции вероятности протекания простой кубической решётки размера L=2 в приближении линейной связи порога протекания бесконечной решётки xc и среднего значения xcL конечной решётки введена нескейлинговая функция вероятности протекания для решётки размера L>2. Показано, что на пороге протекания нескейлинговые вероятности для всех ПК решёток одинаковы.
Компьютерные эксперименты на основе метода Монте-Карло согласуются с предлагаемой в работе теорией. -
Предложен метод расчета порога протекания xc бесконечной решетки в d-мерном пространстве на основе среднего значения величины xcL решеток малых размеров L. Условие применимости метода ограничило круг рассматриваемых 2d и 3d решеток в задаче узлов до квадратной и алмазной. Величины xcL для этих решеток рассчитывались на основе вектора начального состояния решетки и матрицы смежности графа, соответствующего решетке с долей узлов x=1. Вычислены пороги протекания квадратной решетки xc=0,592744 и решетки алмаза xc=0,430308.
-
Рассмотрена перколяционная задача узлов. Методом двух решёток получены пороги протекания треугольной решётки xc = 1/2 и квадратной 1,2 решётки xc = 0,40725616.
На основе идеи Ходжа из алгебраической геометрии предложен метод оценки порога протекания xc бесконечной решётки по перколяционным свойствам её элементарной ячейки. Изучена модель элементарной ячейки решётки Бёте, которая в дальнейшем применена для оценки порогов протекания объёмноцентрированной кубической и гранецентрированной кубической решёток в трёхмерном случае и шестиугольной решётки в плоском случае. В результате оценки получены значения xc(bcc) = 0,24595716 для ОЦК, xc = xc(fcc) = 0,19925370 для ГЦК и xc = 0,69700003 для шестиугольной решёток.
-
Рассмотрены трехмерные задачи узлов для простой кубической решетки и твердых сфер, находящихся в хаотическом движении. Установлены дополнительные (к двухпоказательному скейлингу) соотношения между индексами: 2-α-γ=ν (или νd-γ=ν) и β=-2α. Определены численные значения трехмерных критических индексов: α=-2/11, η=0, β=4/11, ν=8/11, γ=16/11 и δ=5.
-
По введенной функции вероятности протекания в модели решетки Бете определен порог протекания простой кубической решетки в задаче узлов: xc(s.c.)=0,3116865.
-
Перколяционная модель проводимости двухфазной решетки: теория и компьютерный эксперимент, с. 112-122Изучена проводимость (входящая в закон связи потока и обобщенной силы) перколяционной системы, состоящей из проводящей и непроводящей фаз. На основе представлений Шкловского-де Жена о топологической структуре бесконечного кластера установлена связь проводимости с вероятностью протекания. Получена зависимость решеточной проводимости в широком диапазоне изменения концентрации проводящей фазы. Показано согласование теории и компьютерного эксперимента, а также согласование скейлинговой зависимости проводимости (при критическом индексе из следствия гипотезы Александера-Орбаха) для квадратной и простой кубической решеток.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.