Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассматривается задача устойчивой реконструкции неизвестного входа системы по результатам неточных измерений ее решения. Суть задачи состоит в следующем. Имеется система, описываемая распределенным уравнением второго порядка, решение которой зависит от входа, меняющегося со временем. Как вход, так и решение заранее не известны. В дискретные моменты времени измеряется решение уравнения. Результаты измерения неточны. Требуется построить алгоритм приближенного восстановления входа, обладающий свойствами динамичности и устойчивости. Свойство динамичности означает, что текущие значения приближений входа вычисляются в реальном времени (он-лайн). Свойство устойчивости — что приближения являются достаточно точными, при хорошей точности измерений. Задача относится к классу обратных задач. Представленный в статье алгоритм основан на конструкциях теории устойчивого динамического обращения в комбинации с методами некорректных задач и позиционного управления.
-
О единственности решения задачи мультипликативного управления для модели дрейфа–диффузии электронов, с. 3-18Исследуется задача мультипликативного управления для стационарной диффузионно-дрейфовой модели зарядки полярного диэлектрика. Роль управления играет старший коэффициент в уравнении модели, имеющий смысл коэффициента диффузии электронов. Глобальная разрешимость краевой задачи и локальная единственность ее решения, а также разрешимость экстремальной задачи доказана в предыдущих работах авторов. В настоящей работе для задачи управления выводится система оптимальности и устанавливаются условия локальной регулярности множителя Лагранжа. На основе анализа данной системы доказывается локальная единственность решения задачи мультипликативного управления для конкретных функционалов качества.
-
О единственности и устойчивости решений задач управления для модели дрейфа–диффузии электронов, с. 27-46Исследуются вопросы единственности и устойчивости решений задач управления для модели электронно-индуцированной зарядки неоднородного полярного диэлектрика. Устанавливаются достаточные условия единственности и устойчивости оптимальных решений рассматриваемых экстремальных задач, а также выводятся локальные оценки их устойчивости относительно малых возмущений функционалов качества.
-
Рассматривается структурированная популяция, особи которой разделены на возрастные или типические группы, заданная нормальной автономной системой разностных уравнений. Для данной популяции исследуется задача оптимального сбора возобновляемого ресурса на конечном или бесконечном промежутках времени. Для популяции, эксплуатируемой на конечном промежутке, описана стратегия промысла, при которой достигается наибольшее значение общей стоимости изымаемого ресурса. Если же добыча ресурса происходит на неограниченном промежутке, то определяется средняя временная выгода и вычисляется ее значение при стационарном режиме эксплуатации; рассматриваются случаи, когда система имеет асимптотически устойчивую неподвижную точку или устойчивый цикл. Также описана стратегия промысла, которая является оптимальной среди других способов эксплуатации; показано, что при определенных условиях она является стационарной или отличается от стационарной только значением управления в начальный момент времени. Результаты работы проиллюстрированы на примере двухвозрастной эксплуатируемой популяции, в которой промысловому изъятию подвержены особи или младшей, или обеих возрастных групп.
-
Получены достаточные условия асимптотической устойчивости и слабой асимптотической устойчивости заданного множества $\mathfrak M\doteq\bigl\{(t,x)\in [t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\}$ относительно управляемой системы с импульсным воздействием в предположении, что функция $t\mapsto M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и замкнуто. Также получены условия, при которых для каждого решения $x(t,x_0)$ управляемой системы, выходящего из достаточно малой окрестности множества $M(t_0),$ найдется момент времени $t^*$ такой, что точка $(t,x(t,x_0))$ принадлежит $\mathfrak M$ при всех $t\in [t^*,+\infty).$ Некоторые из представленных здесь утверждений являются аналогами результатов Е.А. Панасенко и Е.Л. Тонкова для систем с импульсами, в других утверждениях существенно используется специфика импульсного воздействия. Результаты работы проиллюстрированы на примере модели «вредитель-биоагент» с импульсным управлением в предположении, что вбросы биоагентов (природных врагов данных вредителей) происходят в фиксированные моменты времени и количество вредителей, потребляемых в среднем одним биоагентом за единицу времени, задается трофической функцией Холлинга. Получены условия асимптотической устойчивости множества $\mathfrak M=\bigl\{(t,x)\in \mathbb R^3_+: x_1\leqslant C_1\bigr\},$ где $x_1={y_1}/{K},$ $y_1$ - размер популяции вредителей, $K$ - емкость среды.
-
Асимптотическое поведение решений в динамических биматричных играх с дисконтированными индексами, с. 193-209В работе рассматриваются динамические биматричные игры с интегральными показателями, дисконтированными на бесконечном интервале времени. Динамика системы задается дифференциальными уравнениями, описывающими изменение поведения игроков в зависимости от поступающих сигналов управления. Рассматривается задача построения равновесных траекторий в рамках минимаксного подхода, предложенного Н.Н. Красовским и А.И. Субботиным в теории дифференциальных игр. Используется конструкция динамического равновесия по Нэшу, которая развита в работах А.Ф. Клейменова. Для синтеза оптимальных стратегий управления применяется принцип максимума Л.С. Понтрягина в сочетании с методом характеристик для уравнений Гамильтона-Якоби. Получены аналитические формулы для кривых переключения оптимальных стратегий управления. Проведен анализ чувствительности равновесных решений в зависимости от параметра дисконтирования в интегральных функционалах выигрыша. Установлена асимптотическая сходимость равновесных траекторий по параметру дисконтирования к решению динамической биматричной игры со среднеинтегральными функционалами выигрыша, которые исследовались в работах В.И. Арнольда. Рассмотрено приложение полученных результатов к динамической модели инвестирования на финансовых рынках.
-
О способах эксплуатации популяции, заданной разностным уравнением со случайными параметрами, с. 211-227Рассматривается модель эксплуатируемой однородной популяции, заданная разностным уравнением, зависящим от случайных параметров. При отсутствии эксплуатации развитие популяции описывается уравнением $$X(k+1)=f\bigl(X(k)\bigr), \quad k=1,2,\ldots,$$ где $X(k)$ — размер популяции или количество биоресурса в момент времени $k,$ $f(x)$ — вещественная дифференцируемая функция, заданная на отрезке $I=[0,a],$ такая, что $f(I)\subseteq I.$ В моменты времени $k=1,2,\ldots$ из популяции извлекается случайная доля ресурса $\omega(k)\in\Omega\subseteq[0,1]$. Процесс сбора может быть остановлен, когда доля собранного ресурса превысит некоторое значение $u(k)\in[0,1)$, чтобы сохранить по возможности большую часть популяции. Тогда доля добываемого ресурса будет равна $\ell(k)=\min (\omega(k),u(k)).$ Средняя временная выгода $H_*$ от извлечения ресурса равна пределу среднего арифметического от количества добываемого ресурса $X(k)\ell(k)$ в моменты времени $1,2,\ldots,k$ при $k\to\infty.$ Решается задача выбора управления процессом промыслового изъятия, при котором значение $H_*$ можно оценить снизу с вероятностью единица по возможности наибольшим числом. Оценки средней временной выгоды существенно зависят от свойств функции $f(x),$ определяющей динамику популяции; данные оценки получены для трех классов уравнений с функциями $f(x),$ обладающими определенными свойствами. Результаты работы проиллюстрированы численными примерами, построенными методом динамического программирования на основании того, что исследуемый процесс эксплуатации популяции является марковским процессом принятия решений.
-
Рассматривается плоская модель курсового движения автомобиля, с двумя степенями свободы (боковое перемещение центра тяжести и курсовой угол). Управление осуществляется поворотом управляемых колес. Система рассматривается как замкнутая система автоматического регулирования. В статье рассматривается нахождение «оптимальной» передаточной характеристики, наилучшей в некотором определенном смысле для замкнутой системы. Анализируются возможные критерии оптимизации. Показано, что наиболее подходящим критерием для осуществления управления данным объектом является минимум функционала от отклонения от заданной траектории направляющей точки (точки, расположенной на продольной оси автомобиля впереди по направлению движения) и угла поворота управляемых колес.
-
Продолжено исследование условий положительной инвариантности и асимптотической устойчивости заданного множества относительно управляемой системы с импульсным воздействием. Рассматривается множество $\mathfrak M \doteq \bigl\{ (t,x) \in [t_0,+\infty) \times \mathbb{R}^n: x\in M(t)\bigr\}$, где функция $t\rightarrow M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. В терминах функций Ляпунова и производной Кларка получены условия слабой положительной инвариантности данного множества, слабой равномерной устойчивости по Ляпунову и слабой асимптотической устойчивости. Также доказана теорема сравнения для решений систем и уравнений с импульсами, следствием которой являются условия существования решений системы, асимптотически стремящихся к нулю. Полученные результаты проиллюстрированы на примере модели конкуренции двух видов, подверженных импульсному управлению в фиксированные моменты времени.
-
Свойства средней временной выгоды в стохастических моделях сбора возобновляемого ресурса, с. 213-221Рассматриваются модели сбора возобновляемого ресурса, заданные дифференциальными уравнениями с импульсными воздействиями, зависящими от случайных параметров. При отсутствии эксплуатации развитие популяции описывается дифференциальным уравнением $\dot x =g(x),$ которое имеет асимптотически устойчивое решение $\varphi(t)\equiv K,$ $K>0.$ Предполагаем, что длины интервалов $\theta_k=\tau_k-\tau_{k-1}$ между моментами импульсов $\tau_k$ являются случайными величинами и размеры импульсного воздействия зависят от случайных параметров $v_k,$ $k=1,2,\ldots.$ На процесс сбора можно влиять таким образом, чтобы остановить заготовку в том случае, когда ее доля окажется достаточно большой, чтобы сохранить некоторую часть ресурса для увеличения размера следующего сбора. Построено управление $\bar u=(u_1,\dots,u_k,\dots),$ ограничивающее долю добываемого ресурса в каждый момент времени $\tau_k$ таким образом, чтобы количество оставшегося ресурса, начиная с некоторого момента $\tau_{k_0},$ было не меньше заданного значения $x>0.$ Получены оценки средней временной выгоды от извлечения ресурса и приведены условия, при которых она имеет положительный предел (с вероятностью единица). Показано, что при недостаточном ограничении на извлечение ресурса значение средней временной выгоды может равняться нулю для всех или для почти всех значений случайных параметров. Таким образом, мы описываем способ добычи ресурса для режима сбора в долгосрочной перспективе, при котором постоянно сохраняется некоторая часть популяции, необходимая для ее дальнейшего восстановления, и с вероятностью единица существует предел средней временной выгоды.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.