Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.
-
Предложен подход к получению точных решений неоднородных дифференциальных уравнений в частных производных. Показано, что если правая часть уравнения задает поверхность уровня для решения уравнения, то в рамках этого подхода поиск решений рассматриваемого неоднородного уравнения сводится к решению обыкновенного дифференциального уравнения (ОДУ). В противном случае поиск решений уравнения приводит к решению системы ОДУ. Получение системы ОДУ опирается на наличие в рассматриваемом уравнении первых производных от искомой функции. Для уравнений в частных производных, которые явно не содержат первые производные искомой функции, предложена подстановка, позволяющая получить такие члены в уравнении. Чтобы свести исходное уравнение, содержащее первые производные от искомой функции, к системе ОДУ, рассматривается связанная с ним система двух уравнений в частных производных. Первое уравнение системы содержит в левой части частные производные только первого порядка, выбранные из исходного уравнения, в правой части - произвольную функцию, аргументом которой является искомая функция. Второе уравнение содержит члены исходного уравнения, не вошедшие в первое уравнение системы, и правую часть первого уравнения формируемой системы. Решение исходного уравнения сводится к поиску решения первого уравнения полученной системы уравнений в частных производных, обращающего в тождество второе уравнение системы. Такое решение удается найти, используя расширенную систему уравнений характеристик для первого уравнения и произвол в выборе функции из правой части этого уравнения. Описанный подход применен для получения некоторых точных решений уравнения Пуассона, уравнения Монжа-Ампера и уравнения конвекции-диффузии.
-
В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.
-
К решению неоднородных уравнений в частных производных с правой частью, заданной на сетке, с. 443-457Предлагается алгоритм получения решения уравнений в частных производных с правой частью, заданной на сетке $\{ (x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}\},$ $(\mu=1,2,\ldots,N)\colon f_{\mu}=f((x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}).$ Здесь $n$ — число независимых переменных в исходном уравнении в частных производных, $N$ — число строк в сетке для правой части, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ — правая часть исходного уравнения. Алгоритм реализует редукцию исходного уравнения к системе обыкновенных дифференциальных уравнений (системе ОДУ) с начальными условиями в каждой точке сетки и включает следующую последовательность действий. Ищется решение исходного уравнения, зависящее от одной независимой переменной. Исходному уравнению ставится в соответствие некоторая система соотношений, содержащая произвольные функции и включающая уравнение в частных производных первого порядка. Для уравнения первого порядка выписывается расширенная система уравнений характеристик. Присоединяя к ней остальные соотношения, содержащие произвольные функции, и требуя, чтобы эти соотношения были первыми интегралами расширенной системы уравнений характеристик, приходим к искомой системе ОДУ, завершая редукцию. Предлагаемый алгоритм позволяет в каждой точке сетки находить решение исходного уравнения в частных производных, удовлетворяющее заданным начальным и краевым условиям. Алгоритм применяется для получения решений уравнения Пуассона и уравнения нестационарной осесимметричной фильтрации в точках сетки, на которой заданы правые части соответствующих уравнений.
-
Об одном подходе в исследовании движения гиростата с переменным гиростатическим моментом, с. 102-115Рассмотрена задача о движении гиростата, имеющего неподвижную точку, с переменным гиростатическим моментом под действием силы тяжести. Предложен новый метод интегрирования уравнений движения системы, состоящей из тела-носителя и трех роторов, которые вращаются вокруг главных осей. Его можно отнести к методу вариации постоянной в функции для гиростатического момента, который линейно зависит от вектора вертикали. При постоянном множителе гиростатический момент удовлетворяет уравнению Пуассона, а вариация его находится из интеграла площадей. Выполнена редукция исходных уравнений к системе пятого порядка. Получены новые решения данных уравнений в случае сферического распределения масс гиростата и для прецессионных движений тела-носителя. Установлен явный вид гиростатического момента для случая трех инвариантных соотношений.
-
Бесконечные сети Шрёдингера, с. 640-650Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.
-
О разрешимости краевых задач Дирихле и Неймана для уравнения Пуассона с множественной инволюцией, с. 651-667В пространстве $R^l$, $l\geq 2$, рассматриваются преобразования типа инволюции. Исследуются свойства матриц этих преобразований. Определена структура рассматриваемой матрицы и доказано, что матрица этих преобразований определяется элементами первой строки. Доказана также симметричность исследуемой матрицы. Кроме того, в явном виде найдены собственные векторы и собственные значения рассматриваемой матрицы. Найдена также обратная матрица и доказано, что обратная матрица имеет такую же структуру, как и основная матрица. В качестве приложений рассматриваемых преобразований введены и изучены свойства нелокального аналога оператора Лапласа. Для соответствующего нелокального уравнения Пуассона в единичном шаре исследованы вопросы разрешимости краевых задач Дирихле и Неймана. Доказана теорема об однозначной разрешимости задачи Дирихле, построены явный вид функции Грина и интегральное представление решения, а также найден порядок гладкости решения задачи в классе Гёльдера. Найдены также необходимые и достаточные условия разрешимости задачи Неймана, явный вид функции Грина и интегральное представление.
-
В статье исследованы условия существования двух новых классов полиномиальных решений дифференциальных уравнений задачи о движении гиростата с неподвижной точкой в магнитном поле с учетом эффекта Барнетта–Лондона. Общая особенность структуры этих классов заключается в том, что функции, задающие инвариантные соотношения для компонент единичного вектора оси симметрии действующих силовых полей, являются либо рациональными функциями от первой компоненты указанного вектора, либо от вспомогательной переменной. Построены три новых частных решения рассматриваемых полиномиальных классов. Эти решения описываются функциями, полученными обращением гиперэллиптических интегралов. Доказано, что еще одно построенное решение исследуемых полиномиальных структур, для которого движение гиростата обладает свойством прецессионности, является частным случаем известного решения.
-
О разрешимости некоторых краевых задач для нелокального уравнения Пуассона с периодическими условиями, с. 137-154В настоящей работе с помощью отображений типа инволюции вводится нелокальный аналог оператора Лапласа. Для соответствующего нелокального аналога уравнения Пуассона в единичном шаре изучены новые классы краевых задач. В рассматриваемых задачах граничные условия заданы в виде связи значения искомой функции в верхней полусфере со значением в нижней полусфере. Исследуемые задачи обобщают известные периодические и антипериодические краевые задачи для круговых областей. Задачи решаются сведением их к двум вспомогательным задачам с краевыми условиями Дирихле и Неймана для нелокального аналога уравнения Пуассона. Используя известные утверждения для полученных вспомогательных задач, мы доказываем теоремы о существовании и единственности решения основных задач. Найдены точные условия разрешимости исследуемых задач, а также получены интегральные представления решений. Изучены также спектральные вопросы, связанные с периодическими задачами. Найдены собственные функции и собственные значения этих задач. Доказаны теоремы о полноте системы собственных функций в пространстве $L_2$.
-
В работе предложен общий топологический подход к исследованию устойчивости периодических решений интегрируемых динамических систем с двумя степенями свободы. Развиваемые методы проиллюстрированы на примерах нескольких интегрируемых задач, связанных с классическими уравнениями Эйлера—Пуассона, движением твердого тела в жидкости, а также динамикой газообразных расширяющихся эллипсоидов. Данные топологические методы позволяют также отыскивать невырожденные периодические решения интегрируемых систем, что является особенно актуальным в тех случаях, когда общее решение, например, при помощи разделения переменных неизвестно.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.