Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Численное решение задачи Бока, с. 59-64Численно исследуются орбиты звезд скопления, обращающегося в плоскости Галактики по круговой орбите (задача Бока). В качестве модели потенциала скопления используется модель Шустера–Пламмера. Рассматривается влияние начальных условий на характер финальных движений, в частности на возможность вылета звезды из скопления. Произведен массовый расчет орбит звезд для различных начальных значений энергии и момента импульса относительно скопления. Оценены вероятности вылета звезды из скопления.
-
Рассматривается задача о скольжении однородного прямого цилиндра произвольной формы (шайбы) по горизонтальной плоскости под действием сил сухого трения. Пятно контакта цилиндра с плоскостью совпадает с его основанием. Одной из центральных гипотез в работе является выбор математической модели взаимодействия малого элемента поверхности шайбы с плоскостью. Предполагается, что данное явление описывается законом сухого трения Амонтона–Кулона. В данной работе основное внимание уделено качественному анализу уравнений движения системы, который позволит описать динамику при малых значениях кинетической энергии системы (финальную динамику). Сформулированы и доказаны качественные свойства динамики произвольных шайб. Приведены примеры, показывающие различие финальной динамики шайб, опирающихся на шероховатую плоскость круглым основанием, центрально-симметричным и произвольной формы.
-
В работе определены границы применимости квазистационарного подхода в моделировании динамики жидкости, испаряющейся с подложки (при постоянной площади контакта) и в открытой цилиндрической ячейке капли. Для сравнения рассматривается нестационарная модель. Нестационарная система уравнений (с полной формой записи уравнения движения) и квазистационарная система уравнений решаются численно. Расчеты проведены при различных значениях скорости испарения и капиллярного числа на примере капель воды и этиленгликоля. Анализ расчетных данных показал, что на финальной стадии испарения капли чистого растворителя результаты, полученные с использованием двух моделей, расходятся. На конечном этапе процесса скорость радиального течения, вычисленная с помощью нестационарной модели, точнее согласуется с экспериментальными данными, чем результат, полученный на базе квазистационарного подхода. Этот факт объясняется тем, что на последней стадии испарения квазистационарное приближение плохо работает ввиду стремительного относительного изменения толщины пленки и больших значений скоростей.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.