Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'функция напряжений':
Найдено статей: 4
  1. В статье рассматривается аналогия между двумя плоскими задачами механики сплошных сред: гидродинамическая задача о движении вязкой жидкости, заключенной между двумя вращающимися цилиндрами, и плоская задача теории упругости в напряжениях, создаваемых в трубе постоянным нормальным внешним давлением. В обеих задачах область решения - кольцо; в рамках настоящей работы рассмотрены два случая: концентрическое и эксцентрическое кольцо. В первой части статьи проведено построение аналогии для случая концентрического кольца, показано, что в этом случае решения рассматриваемых задач выражаются функциями одного и того же вида. Во второй части статьи представлена попытка построения прямой аналогии для случая эксцентрического кольца и обозначены возникающие проблемы. Исследование в третьей части статьи направлено на установление напряженного состояния в эксцентрическом кольце, соответствующего бигармонической функции напряжений, построенной по аналогии с изученной гидродинамической задачей с учетом условий однозначности смещений. В результате проведенного исследования можно сделать вывод о том, что аналогия между рассматриваемыми задачами может быть установлена, но только с учетом механических особенностей каждой из них. При этом в случае концентрического кольца наблюдается прямая аналогия.

  2. Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.

  3. Рассматривается система Ball and Beam с нелинейной геометрической связью. Из полного уравнения этой связи определяются два возможных положения равновесия системы. Проведен сравнительный анализ структур уравнений возмущенного движения в окрестности обоих положений равновесия, исходя из уравнений без множителей связей в форме М.Ф. Шульгина. На этой основе обсуждается вопрос о допустимости линеаризации геометрических связей. Даны решения задач стабилизации для каждого равновесия при двух вариантах выбора избыточной координаты. Стабилизирующее управление (напряжение на якорной обмотке приводного двигателя) определяется решением методом Н.Н. Красовского линейно-квадратичных задач для соответствующих управляемых подсистем. Показано совпадение управлений как функций времени для одного и того же равновесия при разном выборе избыточной координаты, причем стабилизирующие управления являются при этом линейными функциями разных фазовых переменных. Приведены графики переходных процессов в замкнутых найденными управлениями системах. Асимптотическая устойчивость обоих положений равновесия в полной нелинейной замкнутой системе следует из ранее доказанной теоремы об асимптотической устойчивости при наличии нулевых корней характеристического уравнения, соответствующих избыточным координатам.

  4. Рассматривается феноменологическая модель термомеханического поведения полимерных материалов в диапазоне температур, включающем релаксационный переход в стеклообразное состояние (стеклование) и обратный переход (размягчение). Дана наглядная интерпретация закономерностей формирования напряженно-деформированного состояния стеклующегося материала с привлечением возможностей предложенной механической модели. Сформулирована система экспериментов для идентификации материальных функций и констант. Проведены натурные испытания для двух типов стеклующихся полимеров - эпоксидной смолы и полиметилметакрилата.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref