Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'эксцентриситет орбиты':
Найдено статей: 4
  1. Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.

  2. Рассматривается плоская ограниченная эллиптическая задача трех тел. Изучаются движения, близкие к треугольным точкам либрации. Предполагается, что параметры задачи (эксцентриситет орбиты основных притягивающих тел и отношение их масс) лежат внутри области устойчивости в первом приближении точек либрации. Величина эксцентриситета считается малой. С точностью до второй степени эксцентриситета включительно получено аналитическое представление для линейного, периодического по истинной аномалии, канонического преобразования, приводящего функцию Гамильтона линеаризованных уравнений возмущенного движения в окрестности точек либрации к их вещественной нормальной форме. Эта форма соответствует двум, не связанным один с другим, гармоническим осцилляторам, частоты которых зависят от параметров задачи. При построении нормализующего канонического преобразования используется метод Депри-Хори теории возмущений гамильтоновых систем. Его реализация в конкретной рассматриваемой задаче существенно опирается на компьютерные системы аналитических вычислений.

  3. Рассмотрена задача о приливном влиянии на сферическую центральную планету от возмущающего тела (спутника), движущегося по эллиптической орбите. Произведено усреднение приливного потенциала по периоду движения спутника и доказано, что независимо от величины эксцентриситета орбиты сила от возмущающего тела оказывается в среднем чисто радиальная, как если бы орбита спутника была просто круговая.

  4. Проскурин С.А., Осипков Л.П.
    Орбиты далеких спутников звезд, с. 116-126

    Численно исследовано плоское движение материальной точки в поле точечной массы (звезды) и Галактики. Для потенциала Галактики принималось приливное приближение. Уравнения движения интегрировались на интервале времени до 60/√A(A-B) (A, B - коэффициенты Оорта). Частица считалась улетающей, если она удалялась от звезды на расстояние, превышающее 2 расстояния от точки либрации. У остающихся частиц оскулирующие эксцентриситеты или уменьшались, или оставались в среднем (по времени) неизменными. Показана зависимость доли орбит разного типа от начальных условий.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref