Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О движении динамически симметричного спутника в одном случае кратного параметрического резонанса, с. 594-612Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.
-
О нормальных координатах в окрестности лагранжевых точек либрации ограниченной эллиптической задачи трех тел, с. 657-671Рассматривается плоская ограниченная эллиптическая задача трех тел. Изучаются движения, близкие к треугольным точкам либрации. Предполагается, что параметры задачи (эксцентриситет орбиты основных притягивающих тел и отношение их масс) лежат внутри области устойчивости в первом приближении точек либрации. Величина эксцентриситета считается малой. С точностью до второй степени эксцентриситета включительно получено аналитическое представление для линейного, периодического по истинной аномалии, канонического преобразования, приводящего функцию Гамильтона линеаризованных уравнений возмущенного движения в окрестности точек либрации к их вещественной нормальной форме. Эта форма соответствует двум, не связанным один с другим, гармоническим осцилляторам, частоты которых зависят от параметров задачи. При построении нормализующего канонического преобразования используется метод Депри-Хори теории возмущений гамильтоновых систем. Его реализация в конкретной рассматриваемой задаче существенно опирается на компьютерные системы аналитических вычислений.
-
Рассмотрена задача о приливном влиянии на сферическую центральную планету от возмущающего тела (спутника), движущегося по эллиптической орбите. Произведено усреднение приливного потенциала по периоду движения спутника и доказано, что независимо от величины эксцентриситета орбиты сила от возмущающего тела оказывается в среднем чисто радиальная, как если бы орбита спутника была просто круговая.
-
Орбиты далеких спутников звезд, с. 116-126Численно исследовано плоское движение материальной точки в поле точечной массы (звезды) и Галактики. Для потенциала Галактики принималось приливное приближение. Уравнения движения интегрировались на интервале времени до 60/√A(A-B) (A, B - коэффициенты Оорта). Частица считалась улетающей, если она удалялась от звезды на расстояние, превышающее 2 расстояния от точки либрации. У остающихся частиц оскулирующие эксцентриситеты или уменьшались, или оставались в среднем (по времени) неизменными. Показана зависимость доли орбит разного типа от начальных условий.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.