Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.
уравнения Кирхгофа-Пуассона, уравнения Эйлера-Пуассона, уравнения Н. Ковалевского, полиномиальные решения, эффект Барнетта-ЛондонаIn this paper we consider the reduction of Kirchhoff-Poisson equations related to the problem of rigid body motion under the action of potential and gyroscopic forces and also equations of the problem of rigid body motion taking into account the Barnett-London effect. For the above-mentioned problems, we obtain analogues of N. Kovalevski equations. In addition, for the above-mentioned problems we obtain two new particular solutions to the polynomial class of Steklov-Kovalevski-Goryachev reduced differential equations. The polynomial solution of the problem of gyrostat motion under the action of potential and gyroscopic forces is characterized by the following property: the squares of the second and the third vector component of angular velocity are quadratic polynomials of the first vector component that is an elliptic function of time. A polynomial solution of the equation of rigid body motion in a magnetic field (taking into account the Barnett-London effect) is characterized by the fact that the square of the second vector component of the angular velocity is the second-degree polynomial, while the square of the third component is the fourth-degree polynomial of the first vector component. The former is found as a result of an elliptic integral inversion.
-
Влияние эффектов Барнетта-Лондона и Эйнштейна-де Гааза на движение неголономной сферы Рауса, с. 583-598Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.
Influence of Bartnett-London and Einstein-de Haas effects on the motion of the nonholonomic sphere of Routh, pp. 583-598We consider the rolling of an unbalanced dynamically symmetric ball along a plane without slipping in the presence of an external magnetic field. We assume that the ball may be wholly or partially composed of dielectric, ferromagnetic, or superconducting materials. According to the existing phenomenological theory, in this case, when studying the dynamics of a ball, it is required to take into account the Lorentz force moment, Barnett-London moment, and Einstein-de Haas moment. Within the framework of this mathematical model, we obtain the conditions for the existence of integrals of motion, which allow us to reduce the integration of equations of motion to a quadrature similar to the Lagrange quadrature for a heavy rigid body.
-
В статье исследованы условия существования двух новых классов полиномиальных решений дифференциальных уравнений задачи о движении гиростата с неподвижной точкой в магнитном поле с учетом эффекта Барнетта–Лондона. Общая особенность структуры этих классов заключается в том, что функции, задающие инвариантные соотношения для компонент единичного вектора оси симметрии действующих силовых полей, являются либо рациональными функциями от первой компоненты указанного вектора, либо от вспомогательной переменной. Построены три новых частных решения рассматриваемых полиномиальных классов. Эти решения описываются функциями, полученными обращением гиперэллиптических интегралов. Доказано, что еще одно построенное решение исследуемых полиномиальных структур, для которого движение гиростата обладает свойством прецессионности, является частным случаем известного решения.
уравнения Кирхгофа–Пуассона, эффект Барнетта–Лондона, гиростат, полиномиальное решение, инвариантное соотношениеThe paper studies the existence of two new classes of polynomial solutions to differential equations related to the problem of the gyrostat motion with a fixed point in the magnetic field, taking into account the Barnett–London effect. A common feature of the structure of these classes is that the functions that set the invariance relations for the unit vector components of the symmetry axis of the active force fields are either rational functions of the first component of the specified vector or of the auxiliary variable. Three new particular solutions to the polynomial classes under consideration are constructed. These solutions are described by the functions obtained by the inversion of hyperelliptic integrals. It has been proved that another constructed solution of the polynomial structures under study, for which the movement of the gyrostat has the property of precession, is a particular case of a known solution.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.