Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'Dirac difference operator':
Найдено статей: 2
  1. В последнее десятилетие в физической литературе активно изучаются топологические изоляторы. Топологический изолятор - особый тип материала, который внутри объема представляет собой изолятор, а на поверхности проводит электрический ток. Топологические изоляторы обладают интересными физическими свойствами. Например, топологические свойства этого материала могут устойчиво сохраняться вплоть до высоких температур. Топологические изоляторы могут найти применение в самых разнообразных устройствах микроэлектроники: от очень быстрых и экономичных процессоров до топологических квантовых компьютеров. Электрон в топологическом изоляторе описывается безмассовым оператором Дирака. Такие операторы в квазиодномерных структурах (например, в полосках с различными граничными условиями) весьма интересны не только с физической, но и с математической точки зрения, однако до сих пор недостаточно изучены математиками. В данной статье рассматривается разностный оператор Дирака для потенциала вида $V_0 \delta_{n0}.$ Описан спектр и найдены собственные значения такого оператора. Кроме того, исследованы квазиуровни (собственные значения и резонансы) в случае малых потенциалов.

    In the last decade, topological insulators have been actively studied in the physics literature. Topological insulator is a special type of material that is within the scope of an insulator and conducts electricity on the surface. Topological insulators have interesting physical properties, for example, the topological properties of this material can be stably maintained up to high temperatures. Topological insulators can be used in a wide variety of microelectronic devices ranging from very fast and efficient processors to topological quantum computers. The electron in topological insulators is described by the massless Dirac operator. Such operators in quasi-one-dimensional structures (for example, strips with different boundary conditions) are very interesting not only from a physical, but also from a mathematical point of view, but they are still poorly understood by mathematicians. In this article, we have found the eigenvalues of the Dirac difference operator for a potential of the form $ V_0 \delta_{n0}. $ We have studied the quasi-levels (eigenvalues and resonances) of the operator in the case of small potentials.

  2. В последнее десятилетие в физической литературе активно изучается новый класс материалов - топологические изоляторы. Топологические изоляторы обладают интересными физическими свойствами, в частности практически нулевым сопротивлением, и, как ожидается, могут найти применения в микроэлектронике. В отличие от обычных металлов и полупроводников электрон в топологическом изоляторе описывается не оператором (гамильтонианом) Шрёдингера, а безмассовым оператором Дирака. Такие операторы в квазиодномерных структурах (например, в полосках с различными граничными условиями) весьма интересны с математической точки зрения, но до сих пор недостаточно изучены математиками. В данной статье рассматривается гамильтониан Дирака для топологического изолятора несколько более общего вида, а именно при наличии слоя ферромагнетика. Описан спектр такого оператора, найдена его функция Грина (ядро резольвенты), а также указан вид его (обобщенных) собственных функций.

    In the last decade, a new class of materials - topological insulators - is extensively studied in the physics literature. Topological insulators have remarkable physical properties, in particular, near-zero resistance, and are expected to be applied in microelectronics. Unlike conventional metals and semiconductors, an electron in topological insulators is described not by the Schrodinger operator (Hamiltonian), but by the massless Dirac operator. Such operators in quasi-one-dimensional structures (for example, strips with different boundary conditions) are very interesting from a mathematical point of view, but they are not well studied by mathematicians yet. This article discusses the Dirac Hamiltonian of a topological insulator of somewhat more general form, namely in the presence of a ferromagnetic layer. The spectrum of such an operator is described; its Green's function (the kernel of the resolvent) and (generalized) eigenfunctions are established.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref