Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'eigenvalues':
Найдено статей: 34
  1. Работа посвящена изучению наилучших равномерных рациональных приближений (НРРП) непрерывных функций на компактных, в том числе конечных, подмножествах числовой оси $\mathbb{R}$. Показано, что НРРП на конечном множестве существует не всегда. Более подробно изучен алгоритм Гельмута Вернера поиска НРРП вида $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ для функций на множестве из $N=m+n+2$ точек $x_1<\ldots<x_N$. Этот алгоритм может использоваться в алгоритме Ремеза поиска НРРП на отрезке. При работе алгоритма Вернера вычисляется $(n+1)$ вещественное собственное значение $h_1,\ldots,h_{n+1}$ для пучка матриц $A-hB$, где $A$ и $B$ - некоторые симметричные матрицы. Каждому собственному значению сопоставляется своя рациональная дробь вида $P_m/Q_n$, являющаяся кандидатом на наилучшее приближение. Поскольку не более одной из этих дробей свободны от полюсов на отрезке $[x_1, x_N]$, то возникает задача отыскания того собственного значения, которому соответствует рациональная дробь без полюсов. В работе показано, что если $m=0$, все значения $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ различны и НРРП положительно (отрицательно) во всех точках $x_1,\ldots,x_{n+2}$, то это собственное значение занимает $[(n+2)/2]$-е ($[(n+3)/2]$-е) место по величине. Приведены три численных примера, иллюстрирующих это утверждение.

    The paper deals with the best uniform rational approximations (BURA) of continuous functions on compact (and even finite) subsets of real axis $\mathbb{R}$.The authors show that BURA does not always exist. They study the algorithm of Helmut Werner in more detail. This algorithm serves to search for BURA of the type $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ for functions on a set of $N=m+n+2$ points $x_1<\ldots<x_N$. It can be used within the Remez algorithm of searching for BURA on a segment. The Verner algorithm calculates $(n+1)$ real eigenvalues $h_1,\ldots,h_{n+1}$ for the matrix pencil $A-hB$, where $A$ and $B$ are some symmetric matrices. Each eigenvalue generates a rational fraction of the type $P_m/Q_n$ which is a candidate for the best approximation. It is known that at most one of these fractions is free from poles on the segment $[x_1, x_N]$, so the following problem arises: how to determine the eigenvalue which generates the rational fraction without poles? It is shown that if $m=0$ and all values $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ are different and the approximating function is positive (negative) at all points $x_1,\ldots,x_{n+2}$, then this eigenvalue ranks $[(n+2)/2]$-th ($[(n+3)/2]$-th) in value. Three numerical examples illustrate this statement.

  2. Рассматривается линейная управляемая система с неполной обратной связью с дискретным временем

    x(t+1)=A(t)x(t)+B(t)u(t),   y(t)=C*(t)x(t),   u(t)=U(t)y(t),   t∈Z.

    Исследуется задача управления асимптотическим поведением замкнутой системы

    x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn.                (1)

    Здесь K=C или K=R. Для такой системы вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследовано свойство согласованности системы (1), получены новые необходимые условия и достаточные условия согласованности системы (1), в том числе в стационарном случае. Для стационарной системы вида (1) исследуется задача о глобальном управлении спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы (1) с помощью стационарного управления U к произвольному наперед заданному полиному. Для системы (1) с постоянными коэффициентами специального вида, когда матрица A имеет форму Хессенберга, а в матрицах B и C все строки соответственно до p-й и после p-й (не включая p) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. Ранее было доказано, что обратное утверждение верно для n<4 и неверно для n>5. В настоящей работе доказано, что обратное утверждение верно для n=4.

    We consider a discrete-time linear control system with an incomplete feedback

    x(t+1)=A(t)x(t)+B(t)u(t),   y(t)=C*(t)x(t),   u(t)=U(t)y(t),   t∈Z.

    We study the problem of control over the asymptotic behavior of the closed-loop system

    x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn.               (1)

    where K=C or K=R. For the above system, we introduce the concept of consistency, which is a generalization of the concept of complete controllability onto systems with an incomplete feedback. The focus is on the consistency property of the system (1). We have obtained new necessary conditions and sufficient conditions for the consistency of the above system including the case when the system is time-invariant. For the time-invariant system (1), we study the problem of arbitrary placement of eigenvalue spectrum. The objective is to reduce a characteristic polynomial of a matrix of the stationary system (1) to any prescribed polynomial by means of the time-invariant control U. For the system (1) with constant coefficients of the special form where the matrix A is Hessenberg, the rows of the matrix B before the p-th and the rows of the matrix C after the p-th are equal to zero (not including p), the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. It has been proved that the converse proposition is true for n<4 and false for n>5. In present paper we prove that the converse proposition is true for n=4.

  3. Рассматривается линейная управляемая система с линейной неполной обратной связью с дискретным временем $$x(t+1)=Ax(t)+Bu(t), \quad y(t)=C^*x(t), \quad u(t)=Uy(t),$$ $$t\in\mathbb{Z},\quad (x,u,y)\in\mathbb{K}^n\times\mathbb{K}^m\times\mathbb{K}^k.$$

    Здесь $\mathbb K=\mathbb C$ или $\mathbb K=\mathbb R$. Для замкнутой системы $$x(t+1)=(A+BUC^*)x(t), \quad x\in\mathbb K^n, \qquad(1)$$

    вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследуется свойство согласованности системы $(1)$ в связи с задачей управления спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы $(1)$ с помощью стационарного управления $U$ к произвольному наперед заданному полиному. Для системы $(1)$ специального вида, когда матрица $A$ имеет форму Хессенберга, а в матрицах $B$ и $C$ все строки соответственно до $p$-й и после $p$-й (не включая $p$) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. В предыдущих работах было доказано, что обратное утверждение верно для $n<5$ и неверно для $n>5$. В настоящей работе открытый вопрос для $n=5$ разрешен. Доказано, что при $n=5$ для системы с коэффициентами специального вида свойство согласованности является необходимым условием глобальной управляемости спектра собственных значений. Доказательство производится перебором всевозможных допустимых значений размерностей $m,k,p$. Свойство согласованности эквивалентно свойству полной управляемости «большой системы» размерности $n^2$. Для доказательства строится большая система, строится матрица управляемости $K$ этой системы размерности $n^2\times n^2mk$. Доказывается, что матрица $K$ имеет ненулевой минор порядка $n^2=25$. Для вычисления определителей больших порядков используется система Maple 15.

    We consider a discrete-time linear control system with an incomplete feedback $$x(t+1)=Ax(t)+Bu(t), \quad y(t)=C^*x(t), \quad u(t)=Uy(t),$$ $$t\in\mathbb{Z},\quad (x,u,y)\in\mathbb{K}^n\times\mathbb{K}^m\times\mathbb{K}^k,$$

    where $\mathbb K=\mathbb C$ or $\mathbb K=\mathbb R$. We introduce the concept of consistency for the closed-loop system

    $$x(t+1)=(A+BUC^*)x(t), \quad x\in\mathbb K^n. \qquad(1)$$

    This concept is a generalization of the concept of complete controllability to systems with an incomplete feedback. We study the consistency of the system $(1)$ in connection with the problem of arbitrary placement of eigenvalue spectrum which is to bring a characteristic polynomial of a matrix of the system $(1)$ to any prescribed polynomial by means of the time-invariant control $U$. For the system $(1)$ of the special form where the matrix $A$ is Hessenberg and the rows of the matrix $B$ before the $p$-th and the rows of the matrix $C$ after the $p$-th (not including $p$) are equal to zero, the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. In previous studies it has been proved that the converse is true for $n <5$ and false for $n> 5$. In this paper, an open question for $ n = 5 $ is resolved. For the system $(1)$ of the special form, it is proved that if $n = 5$ then the property of consistency is a necessary condition for the arbitrary placement of eigenvalue spectrum. The proof is carried out by direct searching of all possible valid values of dimensions $ m, k, p $. The property of consistency is equivalent to the property of complete controllability of a big system of dimension $n^2$. For the proof we construct the big system and the controllability matrix $K$ of this system of dimension $n^2\times n^2mk$. We show that the matrix $K$ has a nonzero minor of order $n^2 = 25$. We use Maple 15 to calculate the high-order determinants.

  4. Построен характеристический многочлен спектральной задачи дифференциального уравнения первого порядка на отрезке со спектральным параметром в краевом условии с интегральным возмущением, которое является целой аналитической функцией от спектрального параметра. На основе формулы характеристического многочлена доказаны выводы об асимптотике спектра возмущенной спектральной задачи.

    This work is devoted to the construction of a characteristic polynomial of the spectral problem of a first-order differential equation on an interval with a spectral parameter in a boundary value condition with integral perturbation which is an entire analytic function of the spectral parameter. Based on the characteristic polynomial formula, conclusions about the asymptotics of the spectrum of the perturbed spectral problem are established.

  5. Исследуются собственные значения и резонансы двухчастичного дискретного оператора Шредингера с малым убывающим потенциалом.

    We investigate resonances and eigenvalues of the discret two-particle Schödinger operator with a decreasing small potential.

  6. Рассматривается линейная стационарная управляемая система с наблюдателем. Исследуется свойство согласованности этой системы в случае, когда коэффициенты имеют специальный вид, при котором условие согласованности является достаточным условием глобальной управляемости спектра собственных значений замкнутой системы. Установлено, что для систем специального вида необходимое условие согласованности не является достаточным для размерностей больших чем 5. Найдено новое достаточное условие согласованности для таких систем.

    We consider a linear control system with the observer. We investigate the property of consistency of this system in a special case where consistency is the sufficient condition for global controllability over eigenvalue spectrum of closed-loop system. We prove for systems of the special form that the necessary condition of consistency is not sufficient for dimensions big than 5. The new sufficient condition of consistency for such systems is discovered.

  7. В работе рассматривается трехмерный оператор Шрёдингера для кристаллической пленки с нелокальным потенциалом, представляющим собой сумму оператора умножения на функцию и оператора ранга два («сепарабельного потенциала»), вида $V=W(x)+\lambda _1(\cdot ,\phi _1)\phi _1+\lambda _2(\cdot ,\phi _2)\phi _2$. Здесь функция $W(x)$ экспоненциально убывает по переменной $x_3$, функции $\phi _1(x)$, $\phi _2(x)$ линейно независимы, блоховские по переменным $x_1, \, x_2$ и экспоненциально убывающие по переменной $x_3$. Потенциалы данного рода возникают в теории псевдопотенциала. Под уровнем оператора Шрёдингера понимается его собственное значение или резонанс. Доказаны существование и единственность уровня данного оператора вблизи нуля, получена его асимптотика.

    We consider a three-dimensional Schrödinger operator for a crystal film with a nonlocal potential, which is a sum of an operator of multiplication by a function, and an operator of rank two (“separable potential”) of the form $V=W (x) +\lambda _1(\cdot,\phi _1)\phi _1+\lambda _2(\cdot,\phi _2)\phi _2 $. Here the function $W(x)$ decreases exponentially in the variable $x_3$, the functions $\phi _1(x)$, $\phi _2(x)$ are linearly independent, of Bloch type in the variables $x_1,\,x_2$ and exponentially decreasing in the variable $x_3$. Potentials of this type appear in the pseudopotential theory. A level of the Schrödinger operator is its eigenvalue or resonance. The existence and uniqueness of the level of this operator near zero is proved, and its asymptotics is obtained.

  8. Для блочных матричных линейных систем управления изучается свойство, обеспечивающее назначение произвольных матричных коэффициентов для характеристического матричного полинома. Это свойство является обобщением свойства назначаемости спектра собственных значений или назначаемости произвольных коэффициентов характеристического полинома, от систем с блочными матрицами со скалярными блоками $(s=1)$ на системы с блочными матрицами с блоками более высоких размерностей $(s>1)$. По сравнению со скалярным случаем $(s=1)$ в блочных случаях более высоких размерностей $(s>1)$ появляются новые особенности, отсутствующие в скалярном случае. Вводятся новые свойства, обеспечивающие назначение произвольных (верхнетреугольных, нижнетреугольных, диагональных) матричных коэффициентов для характеристического матричного полинома. В скалярном случае все описанные свойства эквивалентны друг другу, однако в блочных случаях более высоких размерностей это не так. Устанавливаются импликации между этими свойствами.

    For block matrix linear control systems, we study the property of arbitrary matrix coefficient assignability for the characteristic matrix polynomial. This property is a generalization of the property of eigenvalue spectrum assignability or arbitrary coefficient assignability for the characteristic polynomial from system with scalar $(s=1)$ block matrices to systems with block matrices of higher dimensions $(s>1)$. Compared to the scalar case $(s=1)$, new features appear in the block cases of higher dimensions $(s>1)$ that are absent in the scalar case. New properties of arbitrary (upper triangular, lower triangular, diagonal) matrix coefficient assignability for the characteristic matrix polynomial are introduced. In the scalar case, all the described properties are equivalent to each other, but in block matrix cases of higher dimensions this is not the case. Implications between these properties are established.

  9. В статье рассматривается метод поиска и анализа текстурных компонент по прямым полюсным фигурам, с учетом симметрии кубического кристалла и образца. Алгоритм основан на представлении плоскостей отражения полярным комплексом векторов. Поиск ориентации происходит путем перемещения оси полярного комплекса по единичной полусфере, с последующим вращением полярного комплекса относительно этой оси. Далее определяется положение стереографических проекций векторов полярного комплекса на дискретной прямой полюсной фигуре. Ориентация считается найденной, если проекции по крайней мере трех векторов полярного комплекса попадают в область с ненулевой интенсивностью. Для каждой ориентации вычисляется вектор Родрига. Кроме того, определяются углы Эйлера и индексы Миллера. Текстурные компоненты выделяются в интерактивном режиме путем кластеризации данных в пространстве Родрига. С помощью ковариационной матрицы определяются собственные значения и векторы, характеризующие пространственное рассеяние текстурных компонент. В работе исследуются полюсные фигуры алюминиевой фольги после различных текстурных преобразований. Найденные текстурные компоненты представлены в пространстве Родрига.

    The article deals with the method of search and analysis of textural components using direct polar figures with due account for the symmetry of a cubic crystal and a sample. The algorithm is based on the representation of reflection planes by a polar complex of vectors. Search of orientation is made by moving the axis of a polar complex over the unit hemisphere followed by the rotation of a polar complex relative to this axis. Then the position of stereographic projections of the polar complex vectors on a discrete direct pole figure is determined. Orientation is found when the projections of at least three polar complex vectors are located in the area with non-zero intensity. For each orientation a Rodrigues vector is calculated. In addition, Euler angles and Miller indices are determined. Textural components are allocated interactively by clustering the data in Rodrigues space. Using the covariance matrix the eigenvalues and eigenvectors are determined characterizing the spatial dispersion of textural components. Pole figures of an aluminum foil after various textural transformations are investigated in the article. Obtained textural components are displayed in Rodrigues space.

  10. Исследована выпуклость множеств достижимости по части координат нелинейных систем с интегральными ограничениями на управление на малых промежутках времени. Доказаны достаточные условия выпуклости, имеющие вид ограничений на асимптотику собственных чисел грамиана управляемости линеаризованной системы по части координат. В качестве примеров, в статье описаны две нелинейные системы третьего порядка, в одной из которых линеаризованная вдоль траектории, порожденной нулевым управлением, система неуправляема, а в другом управляема. Исследованы достаточные условия выпуклости проекций множеств достижимости. Проведено численное моделирование, продемонстрировавшее невыпуклость некоторых проекций даже для малых длин временного промежутка.

    We investigate the convexity of the reachable sets for some of the coordinates of nonlinear systems with integral constraints on the control at small time intervals. We have proved sufficient convexity conditions in the form of constraints on the asymptotics of the eigenvalues of the Gramian of the controllability of a linearized system for some of the coordinates. There are two nonlinear third-order systems under study as examples. The system linearized along a trajectory generated by zero control is uncontrollable, and the system in the other example is completely controllable. We investigate the sufficient conditions for convexity of projection of reachable sets. Numerical modeling has been carried out, demonstrating the non-convexity of some projections even for small time intervals.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref