Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'resolution':
Найдено статей: 5
  1. Вычисляется второй член асимптотики преобразования монодромии монодромной особой точки для некоторого класса векторных полей на плоскости, диаграмма Ньютона которых состоит из двух четных ребер. В таком случае главный член преобразования монодромии тождественен. Полученный результат дает достаточное условие фокуса для особой точки из рассматриваемого класса.

    The second term of asymptotics of the monodromy map of the monodromic singular point is calculated for some class of vector fields in the plane with the Newton diagram having two even edges. In this case the principal term of the monodromy map is identical. The result obtained gives the sufficient condition for a singular point to be a focus.

  2. В последнее десятилетие в физической литературе активно изучаются топологические изоляторы. Топологический изолятор - особый тип материала, который внутри объема представляет собой изолятор, а на поверхности проводит электрический ток. Топологические изоляторы обладают интересными физическими свойствами. Например, топологические свойства этого материала могут устойчиво сохраняться вплоть до высоких температур. Топологические изоляторы могут найти применение в самых разнообразных устройствах микроэлектроники: от очень быстрых и экономичных процессоров до топологических квантовых компьютеров. Электрон в топологическом изоляторе описывается безмассовым оператором Дирака. Такие операторы в квазиодномерных структурах (например, в полосках с различными граничными условиями) весьма интересны не только с физической, но и с математической точки зрения, однако до сих пор недостаточно изучены математиками. В данной статье рассматривается разностный оператор Дирака для потенциала вида $V_0 \delta_{n0}.$ Описан спектр и найдены собственные значения такого оператора. Кроме того, исследованы квазиуровни (собственные значения и резонансы) в случае малых потенциалов.

    In the last decade, topological insulators have been actively studied in the physics literature. Topological insulator is a special type of material that is within the scope of an insulator and conducts electricity on the surface. Topological insulators have interesting physical properties, for example, the topological properties of this material can be stably maintained up to high temperatures. Topological insulators can be used in a wide variety of microelectronic devices ranging from very fast and efficient processors to topological quantum computers. The electron in topological insulators is described by the massless Dirac operator. Such operators in quasi-one-dimensional structures (for example, strips with different boundary conditions) are very interesting not only from a physical, but also from a mathematical point of view, but they are still poorly understood by mathematicians. In this article, we have found the eigenvalues of the Dirac difference operator for a potential of the form $ V_0 \delta_{n0}. $ We have studied the quasi-levels (eigenvalues and resonances) of the operator in the case of small potentials.

  3. Топологический изолятор - особый тип материала, который внутри («в объеме») представляет собой изолятор, а на поверхности проводит электрический ток. Простейшим топологическим изолятором является конечная цепочка атомов в полиацетилене. Тематика топологических изоляторов в рамках физики твердого тела очень актуальна в последнее время. Большой интерес в физической литературе к топологическим изоляторам (а также похожим на них в смысле топологии сверхпроводящим системам) в значительной степени вызван наличием связи, «соответствием» между «объемом» и «границей». В данной статье рассматривается дискретная модель SSH (Su-Schrieffer-Heeger) для полиацетилена, описывающая электрон в одномерной цепочке атомов с двумя чередующимися амплитудами перехода на соседний атом. Найдены резольвента и спектр рассматриваемого оператора. Исследованы квазиуровни (собственные значения и резонансы) в случае малого потенциала. Кроме того, найдено решение уравнения Липпмана-Швингера и получены асимптотические формулы для вероятностей прохождения и отражения в случае малого возмущения.

    Tinyukova T.S.
    Scattering and quasilevels in the SSH model, pp. 257-266

    Topological insulator is a special type of material that represents an insulator in the interior (“in bulk”) and conducts electricity on the surface. The simplest topological insulator is a finite chain of atoms in polyacetylene. In the last decade topological insulators are actively studied in the physics literature. A great interest to topological insulators (and also to topologically similar superconducting systems) is due to the presence of a link between “volume” and “boundary”. In this article, we have studied the discrete model SSH (Su-Schrieffer-Heeger) for polyacetylene. This model describes an electron in a one-dimensional chain of atoms with two alternating amplitudes of the transition to a neighboring atom. We have found the spectrum and resolution of this operator. The quasilevels (eigenvalues and resonances) in the case of a small potential have been investigated. In addition, we obtained a solution of the Lippmann-Schwinger equation and asymptotic formulas for the probability of transmission and reflection in case of small perturbation.

  4. В последнее десятилетие в физической литературе активно изучается новый класс материалов - топологические изоляторы. Топологические изоляторы обладают интересными физическими свойствами, в частности практически нулевым сопротивлением, и, как ожидается, могут найти применения в микроэлектронике. В отличие от обычных металлов и полупроводников электрон в топологическом изоляторе описывается не оператором (гамильтонианом) Шрёдингера, а безмассовым оператором Дирака. Такие операторы в квазиодномерных структурах (например, в полосках с различными граничными условиями) весьма интересны с математической точки зрения, но до сих пор недостаточно изучены математиками. В данной статье рассматривается гамильтониан Дирака для топологического изолятора несколько более общего вида, а именно при наличии слоя ферромагнетика. Описан спектр такого оператора, найдена его функция Грина (ядро резольвенты), а также указан вид его (обобщенных) собственных функций.

    In the last decade, a new class of materials - topological insulators - is extensively studied in the physics literature. Topological insulators have remarkable physical properties, in particular, near-zero resistance, and are expected to be applied in microelectronics. Unlike conventional metals and semiconductors, an electron in topological insulators is described not by the Schrodinger operator (Hamiltonian), but by the massless Dirac operator. Such operators in quasi-one-dimensional structures (for example, strips with different boundary conditions) are very interesting from a mathematical point of view, but they are not well studied by mathematicians yet. This article discusses the Dirac Hamiltonian of a topological insulator of somewhat more general form, namely in the presence of a ferromagnetic layer. The spectrum of such an operator is described; its Green's function (the kernel of the resolvent) and (generalized) eigenfunctions are established.

  5. В работе проводился расчет генерации шума вентилятора турбореактивного двухконтурного авиационного двигателя (ТРДД) для различных режимов его работы с помощью собственного программного пакета GHOST CFD, реализованного для графических процессоров (ГПУ). Программный пакет основан на схемах типа DRP (Dispersion Relation Preserving), имеющих высокий порядок аппроксимации и высокую разрешающую способность. Для интегрирования по времени также использовалась оптимизированная схема типа LDDRK (Low Dispersion and Dissipation Runge-Kutta). Для моделирования турбулентности использовался неявный метод крупных вихрей с релаксационной фильтрацией (LES-RF). В качестве ротор-статор-интерфейса применялись пересекающиеся (CHIMERA) сетки. Ускорение за счет использования ГПУ, по сравнению с обычным центральным процессором, составило до порядка 12-20 раз, при этом было достигнуто приемлемое время счета. Расчеты в GHOST CFD проводились в постановке «вентилятор - спрямляющий аппарат наружного контура (СА) с полными колесами лопаток». Результаты расчетов сравнивались как с экспериментальными данными, так и с результатами аналогичных расчетов в коммерческом программном пакете ANSYS CFX. При этом в части расчетов в ANSYS CFX учитывался и направляющий аппарат внутреннего контура (НА).

    The present paper considers the computation of noise generation by aircraft engine fan for different operating parameters with an in-house solver for Graphic Processing Units (GPUs), called GHOST CFD (GPU High Order Structured). The solver is based on DRP (Dispersion Relation Preserving) schemes which have a high order of approximation and a high resolution. An Optimized LDDRK (Low Dispersion and Dissipation Runge-Kutta) scheme was utilized for time integration. Large Eddy Simulation based on Relaxation Filtering (LES-RF) was used for the turbulence modeling. The solver implements overset (“CHIMERA”) meshes which were used as rotor-stator interface treatment. The speedup gained from GPUs utilization was about 12-20 times compared to modern 8-core CPU, allowing computations to be performed in a reasonable time period. The computations with GHOST CFD were performed in full annulus formulation with fan and outlet guide vane (OGV) blades. The results were compared with the experimental data as well as the results of similar computations in the commercial ANSYS CFX solver some of which also included inlet guide vane (IGV) blades.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref